³í¹®¸í |
À¯Àü¾Ë°í¸®ÁòÀ» ÀÌ¿ëÇÑ ¿ÀÇǽº °Ç¹°ÀÇ ÇÇÅ©Àü·Â °¨¼Ò¸¦ À§ÇÑ ÀÏÀÏ ¿¹³Ã¼³Á¤¿Âµµ ÃÖÀûÈ ¿¬±¸ / A Study on Daily Precooling Set-point Temperature Optimization for Reducing Peak Electric Power of an Office Building Using Genetic Algorithm |
¼ö·Ï»çÇ× |
¼³ºñ°øÇÐ³í¹®Áý, Vol.34 No.01 (2022-01) |
ÆäÀÌÁö |
½ÃÀÛÆäÀÌÁö(42) ÃÑÆäÀÌÁö(11) |
ÁÖÁ¦¾î |
°Ç¹°¿¡³ÊÁö; ÇÇÅ©Àü·Â; ¿¹³Ã; ȸ±Í¸ðµ¨; À¯Àü¾Ë°í¸®Áò ; Building energy; Peak electric power; Precooling; Regression model; Genetic algorithm |
¿ä¾à1 |
º» ¿¬±¸¿¡¼´Â ÀÏÀÏÃÖ´ëÀü·Â ¼Òºñ·®À» ÃÖ¼ÒÈÇϱâ À§ÇÏ¿© ÃÖÀû ¿¹³Ã¼³Á¤¿Âµµ¸¦ Ž»öÇϰí À̸¦ ¹ÙÅÁÀ¸·Î ÇÏ´Â ¿¹³Ã¿îÀüÀ» ½Ç½ÃÇÏ¿´´Ù. ¸ÕÀú, ¿¹³Ã¼³Á¤¿Âµµ¿Í ³¯¾¾ÀÎÀÚ¸¦ ÀÌ¿ëÇÏ¿© ÀÏÀÏÃÖ´ëÀü·Â ¿¹Ãø¸ðµ¨À» ÀÛ¼ºÇÏ¿´´Âµ¥ °¡´ÉÇÑ È¹µæÇϱ⠽¬¿î ÀԷº¯¼ö¸¦ Ȱ¿ëÇÑ ¸ðµ¨½ÄÀ» ÀÛ¼ºÇϰíÀÚ ³¯¾¾ÀÎÀÚ´Â °Ç±¸¿Âµµ¿Í »ó´ë½Àµµ¸¸ »ç¿ëÇÏ¿´´Ù. ÀÛ¼ºµÈ ¿¹Ãø¸ðµ¨Àº Æò°¡ÇÔ¼ö·Î¼ À¯Àü¾Ë°í¸®Áò¿¡ Àû¿ë, ÀÏÀÏÃÖ´ëÀü·ÂÀÌ ÃÖ¼ÒȵǴ ¿¹³Ã¼³Á¤¿Âµµ¸¦ Ž»öÇϵµ·Ï ÇÏ¿´´Ù. Å×½ºÆ® µ¥ÀÌÅ͸¦ ´ë»óÀ¸·Î ÃÖÀû ¿¹³Ã¼³Á¤¿Âµµ¸¦ µµÃâÇÏ°í ¿¹³Ã¿îÀüÀ» ½Ç½ÃÇÑ °á°ú, Àü¹ÝÀûÀ¸·Î ÀÏÀÏÀü·Â ¼Òºñ·®Àº Áõ°¡ÇÑ ´ë½Å ÀÏÀÏÃÖ´ëÀü·Â ¼Òºñ·®ÀÌ °¨¼ÒÇÑ °á°ú¸¦ ³ªÅ¸³»¾ú´Ù. ¶ÇÇÑ, ±Ù¹«½Ã°£(8~17½Ã) µ¿¾ÈÀÇ Àü·Â¼Òºñ·®ÀÌ °¨¼ÒÇÏ´Â ºÎ¼öÀûÀÎ È¿°úµµ È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. ÃÖÀû¿¹³Ã¿îÀüÀÌ ¹ÌÄ¡´Â °æÁ¦ÀûÀÎ È¿°ú¸¦ È®ÀÎÇϱâ À§ÇÏ¿© ÃÖÀû¿¹³Ã¿îÀü½ÃÀÇ Àü±â·á¿Í ±âÁ¸ ³Ã¹æ¿îÀü½ÃÀÇ Àü±â·á¸¦ ºñ±³ÇÏ¿´´Ù. Àü±â·á´Â ½Ã°£¿¡ µû¸¥ ºÎÇÏÀ²À» °í·ÁÇÏ¿© ±âº»¿ä±Ý°ú »ç¿ë¿ä±ÝÀÇ ÇÕÀ¸·Î °è»êÇÏ¿´´Ù. È®Àΰá°ú, ÃÖÀû¿¹³Ã¿îÀüÀ» ½Ç½ÃÇÑ ¸ðµç ³¯¿¡ ´ëÇØ¼ ±âÁ¸³Ã¹æ¿îÀü°ú ºñ±³ÇÏ¿© Àü±â·á°¡ Àý°¨µÇ¾úÀ½À» È®ÀÎÇÏ¿´´Ù. ¿¹³Ã¿îÀüÀ¸·Î ÀÎÇÑ ÀÏÀÏÃÖ´ëÀü·ÂÀÇ °¨¼Ò´Â ±âº»¿ä±ÝÀÇ °¨¼Ò·Î À̾îÁ³À¸¸ç »ç¿ë¿ä±ÝÀº °æ¿ì¿¡ µû¶ó ±âÁ¸ ³Ã¹æ¿îÀü½Ã º¸´Ù Áõ°¡Çϰųª °¨¼ÒÇÏ´Â ³¯ÀÌ ÀÖ¾ú´Ù. ±×·¯³ª, ÃÖÀû¿¹³Ã¿îÀüÀ¸·Î Àü·Â¼Òºñ·® Áõ°¡¿¡ µû¸¥ »ç¿ë¿ä±Ý Áõ°¡º¸´Ù ÃÖ´ëÀü·ÂÀÇ °¨¼Ò·Î ÀÎÇÑ ±âº»¿ä±ÝÀÇ °¨¼Ò°¡ ´õ ÄDZ⠶§¹®¿¡ ÀüüÀûÀ¸·Î ÀÏÀÏ Àü±â·á´Â °¨¼ÒµÆ´Ù. µû¶ó¼, ÃÖÀû¿¹³Ã¿îÀüÀº ÀÏÀÏÀü±â·á¸¦ °¨¼Ò½ÃÄÑ °æÁ¦ÀûÀÎ È¿°ú°¡ ÀÖÀ½À» È®ÀÎÇÏ¿´´Ù. ÃÖÀû¿¹³Ã¿îÀü Àü·«Àº ´Ù¸¥ °Ç¹°¿¡³ÊÁö ¿î¿ë Àü·«°ú ¿¬µ¿ÇÒ ¼ö ÀÖ´Ù. ¿¹¸¦ µé¾î, ÃÖ´ëÀü·Â½Ã°£ÀÇ ±â±â»ç¿ëÀ» ÁÙÀÓÀ¸·Î½á Àü·Â¼Òºñ¸¦ ÀÏÁ¤ºñÀ² °¨¼Ò½ÃŰ´Â Àü·«À» ¿¹³Ã¿îÀü°ú ÇÔ²² Àû¿ëÇϸé, ÃÖ´ëÀü·Â°¨¼Ò¿¡ ½Ã³ÊÁö¸¦ ¹ßÈÖÇÒ ¼ö ÀÖÀ» °ÍÀÌ´Ù. º» ³í¹®¿¡¼´Â °£´ÜÇÏ°Ô Àû¿ëÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ±âº»ÀûÀÎ ¸ðµ¨±â¹ý°ú ȹµæÇϱ⠽¬¿î º¯¼ö¸¦ ÀÌ¿ëÇÏ¿© ¿¬±¸¸¦ ÁøÇàÇÏ¿´´Ù. ´õ¿í °íµµÈµÈ ¸ðµ¨¸µ ±â¹ý°ú ´Ù¾çÇÑ º¯¼ö¸¦ °í·ÁÇÑ´Ù¸é ´õ Á¤±³ÇÑ ¿î¿ë¹æ¹ýÀ¸·Î½á ´Ù¸¥ ¿î¿ë Àü·«°ú ÇÔ²² °Ç¹° ÃÖ´ëÀü·Â ¼Òºñ·®ÀÇ °¨¼Ò¿¡ À̹ÙÁöÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ±â´ëµÈ´Ù. |
¿ä¾à2 |
In this paper, the peak electric power of an office building was reduced with a precooling strategy. Precooling was conducted two hours before work time. Set-point temperatures for precooling were optimized using a genetic algorithm to minimize daily peak electric power. Searching for optimized set-point temperature was conducted with an objective function that was developed with a multiple regression model. The regression model used dry-bulb temperature, relative humidity, and the set-point temperature as the input parameters, and set daily peak power of the building as the output parameter. Model data were collected from ¡®EnergyPlus¡¯, a building energy simulation program. The applied building was ¡®Medium Office¡¯ provided by EnergyPlus. Based on our results, there was a 0.71~5.64% reduction in daily building peak power with the application of the optimized precooling setpoint temperature. In addition, the reduction of electricity cost due to the reduction of peak electric power was observed. |