건축도시공간연구소

Architecture & Urban Research Institute

pdf원문보기 에러 해결방법 바로가기



문헌홈 > 연구논문 > 상세

[원문보기시 소비되는 포인트 : 100 포인트] 미리보기 인용

한국콘크리트학회|IJCSM 2021년 11월

논문명 Tensile Behavior of High-Strength Stainless Steel Wire Rope (HSSSWR)-Reinforced ECC
저자명 (Xinling Wang) ; (Guanghua Yang) ; (Wenwen Qian) ; (Ke Li) ; (Juntao Zhu)
발행사 한국콘크리트학회
수록사항 IJCSM, Vol.15 No.6 (2021-11)
페이지 시작페이지(735) 총페이지(15)
ISSN 1976-0485
주제분류 재료 / 구조
주제어 ; engineered cementitious composites (ECC); high-strength stainless steel wire rope (HSSSWR); mechanical properties; tensile constitutive model
요약2 Engineered cementitious composites (ECC) show the distinguished characteristics of high post-cracking resistance and ductility. High-strength stainless steel wire rope (HSSSWR) has been successfully used for restoring or strengthening of existing structures. By combining the advantages of these two materials, a new composite system formed by embedding HSSSWR into ECC was proposed and expected to be a promising engineering material for repair or strengthening of structures. To investigate the tensile failure mechanism and mechanical properties of HSSSWR-reinforced ECC, an experimental study on 27 HSSSWR-reinforced ECC plates was conducted considering the effects of the reinforcement ratio of longitudinal HSSSWRs, formula of ECC and width of the plate. Test results revealed that HSSSWR-reinforced ECC exhibit superior post-cracking resistance, deformation capacity and crack-width control capacity. Increasing the reinforcement ratio of longitudinal HSSSWRs can effectively enhance the tensile strength, crack-width control capacity, deformation capacity and tensile toughness of HSSSWR-reinforced ECC. Adding thickener in ECC can significantly improve the crack-width control capacity and deformation capacity of HSSSWR-reinforced ECC due to enhancing uniform distribution of polyvinyl alcohol fibers, but would slightly reduce the cracking stress and maximum tensile stress by bringing small bubbles in the matrix. The tensile properties of HSSSWR-reinforced ECC plates are almost not affected by varying the plate width. Besides, a tensile constitutive model was developed for charactering the stress-strain relationship of HSSSWR-reinforced ECC in tension. Based on mechanical theories and failure characteristics of HSSSWR-reinforced ECC, the model parameters were determined, and calculation equations of cracking stress and tensile strength were proposed. The accuracy of the developed model and calculation equations was verified by test results.
소장처 한국콘크리트학회
언어 영어
DOI https://doi.org/10.1186/s40069-021-00480-x