°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

Çѱ¹»ýÅÂȯ°æ°ÇÃàÇÐȸ|KIEAE Journal 2017³â 10¿ù

³í¹®¸í °Ç¹° ³Ã¹æ½Ã½ºÅÛÀÇ ¿¹ÃøÁ¦¾î¸¦ À§ÇÑ Àΰø½Å°æ¸Á ¸ðµ¨ °³¹ß / Development of an Artificial Neural Network Model for a Predictive Control of Cooling Systems
ÀúÀÚ¸í °­Àμº½Äº°ÀúÀÚ ; ¾ç¿µ±Ç ; ÀÌÈ¿Àº ; ¹ÚÁøÃ¶ ; ¹®Áø¿ì
¹ßÇà»ç Çѱ¹»ýÅÂȯ°æ°ÇÃàÇÐȸ
¼ö·Ï»çÇ× KIEAE Journal, Vol.17 No.5(Åë±Ç 87È£) (2017-10)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(69) ÃÑÆäÀÌÁö(8)
ISSN 2288-968X
ÁÖÁ¦ºÐ·ù ȯ°æ¹×¼³ºñ
ÁÖÁ¦¾î ¿¹ÃøÁ¦¾î ; Àΰø½Å°æ¸Á ; VRF ³Ã¹æ½Ã½ºÅÛ ; ÃÖÀûÁ¦¾îº¯¼ö ; Predictive Control ; Artificial Neural Network ; VRF Cooling System ; Optimal Control Variables
¿ä¾à2 This study aimed at developing an Artificial Neural Network (ANN) model for predicting the amount of cooling energy consumption of the variable refrigerant flow (VRF) cooling system by the different set-points of the control variables, such as supply air temperature of air handling unit (AHU), condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. Applying the predicted results for the different set-points, the control algorithm, which embedded the ANN model, will determine the most energy efficient control strategy. Method: The ANN model was developed and tested its prediction accuracy by using matrix laboratory (MATLAB) and its neural network toolbox. The field data sets were collected for the model training and performance evaluation. For completing the prediction model, three major steps were conducted ? i) initial model development including input variable selection, ii) model optimization, and iii) performance evaluation. Result: Eight meaningful input variables were selected in the initial model development such as outdoor temperature, outdoor humidity, indoor temperature, cooling load of the previous cycle, supply air temperature of AHU, condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. The initial model was optimized to have 2 hidden layers with 15 hidden neurons each, 0.3 learning rate, and 0.3 momentum. The optimized model proved its prediction accuracy with stable prediction results.¿¹ÃøÁ¦¾î ; Àΰø½Å°æ¸Á ; VRF ³Ã¹æ½Ã½ºÅÛ ; ÃÖÀûÁ¦¾îº¯¼ö//Predictive Control ; Artificial Neural Network ; VRF Cooling System ; Optimal Control Variables
¼ÒÀåó Çѱ¹»ýÅÂȯ°æ°ÇÃàÇÐȸ
¾ð¾î ¿µ¾î
DOI http://dx.doi.org/10.12813/kieae.2017.17.5.069
¡á Ãßõ¹®Çå (ÀÌ ¹®Çå°ú °°ÀÌ º» ¹®Çå)
[ƯÁý¿ø°í] ÀΰøÁö´É ±â¹Ý MPC¸¦ ÅëÇÑ °³º° °øÁ¶½Ã½ºÅÛÀÇ ÃÖÀû¿îÀü
¼­º´¸ð ; À̱¤È£ - ¼³ºñ | °øÁ¶ ³Ãµ¿ À§»ý(Çѱ¹¼³ºñ±â¼úÇùȸÁö) : Vol.34 No.01 (201701)
[ƯÁý] EnergyPlus¿Í MATLAB ¿¬µ¿À» ÅëÇÑ ANN ±â¹Ý °øÁ¶¼³ºñ ÃÖÀûÁ¦¾î ¸ðµ¨¸µ ±â¹ý
¿¬»óÈÆ ; ¼­º´¸ð ; ÀÌÁ¦Çå ; ¹®Áø¿ì ; À̱¤È£ - ±×¸°ºôµù(Çѱ¹±×¸°ºôµùÇùÀÇȸÁö) : Vol.18 No.2 (201706)
[ƯÁý¿ø°í] ±â°èÇнÀ ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨À» ÀÌ¿ëÇÑ ¼³ºñ½Ã½ºÅÛ ÃÖÀûÁ¦¾î
¹Úö¼ö ; ¼­¿øÁØ ; ½ÅÇÑ¼Ö ; ÃßÇѰæ ; ¶ó¼±Áß - ¼³ºñ | °øÁ¶ ³Ãµ¿ À§»ý(Çѱ¹¼³ºñ±â¼úÇùȸÁö) : Vol.34 No.01 (201701)
Àΰø½Å°æ¸Á ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ãµ¿±â ¹× °øÁ¶±â ÃÖÀû ±âµ¿/Á¤Áö Á¦¾î
¹Ú¼ºÈ£(Park, SungHo) ; ¾È±â¾ð(Ahn, Ki Uhn) ; Ȳ½ÂÈ£(Hwang, Aaron) ; ÃÖ¼±±Ô(Choi, Sunkyu) ; ¹Úö¼ö(Park, Cheol Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.35 No.02 (201902)
Àΰø½Å°æ¸ÁÀ» ÀÌ¿ëÇÑ °Ç¹°ÀÇ ¿¡³ÊÁö ¸ðµ¨ ÃÖÀûÈ­ ¾Ë°í¸®Áò °³¹ß ¹× °ËÁõ¿¡ °üÇÑ ¿¬±¸
¼º³²Ã¶(Nam Chul Seong) ; ±èÁöÇå(Jee-Hern Kim) ; ÃÖ¿øÃ¢(Wonchang Choi) ; À±»óõ(Sang-Chun Yoon) ; Nabil Nassif(Nabil Nassif) - Çѱ¹»ýȰȯ°æÇÐȸÁö : Vol.24 No.1 (201702)
Àΰø½Å°æ¸Á ¸ðµ¨ ±â¹Ý VRF ½Ã½ºÅÛ ¿¹Ãø Á¦¾î ¾Ë°í¸®Áò °³¹ß
¾È±â¾ð(Ahn, Ki Uhn) ; ±è°æÀç(Kim, Kyung Jae) ; ¼Û°ü¿ì(Song, Kwanwoo) ; ¹Úö¼ö(Park, Cheol Soo) - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.37 No.2 (201710)
»ç¹«¼Ò °Ç¹°¿¡¼­ ³Ãµ¿±âÀÇ ´ë¼öÁ¦¾î¸¦ ÅëÇÑ ³Ãµ¿±â °Åµ¿ Ư¼º ¹× ¿¡³ÊÁö Àý°¨ È¿°ú ºÐ¼®
¼­º´¸ð(Byeong-Mo Seo) ; ¼ÕÁ¤Àº(Jeong-Eun Son) ; À̱¤È£(Kwang Ho Lee) - ¼³ºñ°øÇÐ³í¹®Áý : Vol.28 No.04 (201604)
°¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ã°¢Å¾ ÃÖÀûÁ¦¾î
±èÀç¹Î(Kim, Jae-Min) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ÃßÇѰæ(Chu, Han-Gyeong) ; À̵¿Çõ(Yi, Dong-Hyuk) ; ¹Ú¼ºÈ£(Park, SungHo) ; ¿©¸í¼®(Yeo, Myoung-Souk) ; ¹Úö¼ö(Park, Cheol-Soo) - Ãß°èÇмú¹ßÇ¥´ëȸ : 2018 (201811)
Àΰø½Å°æ¸ÁÀ» ÀÌ¿ëÇÑ °Ç¹°ÀÇ ´Ü±â ºÎÇÏ ¿¹Ãø ¸ðµ¨
Àüº´±â(Byung Ki Jeon) ; ±èÀÇÁ¾(Eui-Jong Kim) - ¼³ºñ°øÇÐ³í¹®Áý : Vol.29 No.10 (201710)
ÃÖ±Ù °ÇÃàºÐ¾ßÀÇ ÀΰøÁö´É ±â°èÇнÀ ¿¬±¸µ¿Çâ
°­Àμº(Kang, In Sung) ; ¹®Áø¿ì(Moon, Jin Woo) ; ¹ÚÁøÃ¶(Park, Jin Chul) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.33 No.04 (201704)
¡á Á¦ 1 ÀúÀÚÀÇ ´Ù¸¥ ¹®Çå ½Äº°ÀúÀÚ´õº¸±â
ÀΰøÁö´É±â¹Ý âȣȯ±â½Ã½ºÅÛ ¿¬±¸ µ¿Ç⠺м®
ÀÌÈ¿Àº(Lee, Hyo Eun) ; ¾ç¿µ±Ç(Yang, Young Kwon) ; °­Àμº(Kang, In Sung) ; ±èÅ¿ø(Kim, Tae Won) ; ¹®Áø¿ì(Moon, Jin woo) ; ¹ÚÁøÃ¶(Park, Jin Chul) - KIEAE Journal : Vol.17 No.6(Åë±Ç 88È£) (201712)
[ƯÁý] °Ç¹° ȯ°æÁ¦¾î¸¦ À§ÇÑ Àΰø½Å°æ¸Á Àû¿ë ¿¬±¸ µ¿Çâ ¹× ÃÖ±Ù »ç·Ê
°­Àμº ; ¾ç¿µ±Ç ; ¹ÚÁøÃ¶ ; ¹®Áø¿ì - °ÇÃàȯ°æ¼³ºñ(Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸÁö) : Vol.11 No.4 (201710)
Àΰø½Å°æ¸Á ±â¹Ý °øÁ¶½Ã½ºÅÛ ¿îÀü ¿¹Ãø¸ðµ¨ °³¹ß
°­Àμº(In Sung Kang) ; ¾ç¿µ±Ç(Young Kwon Yang) ; ÀÌÈ¿Àº(Hyo Eun Lee) ; ¹ÚÁøÃ¶(Jin Chul Park) - ´ëÇѼ³ºñ°øÇÐȸ 2017³âµµ ÇϰèÇмú¹ßÇ¥´ëȸ : (201706)
ÃÖ±Ù °ÇÃàºÐ¾ßÀÇ ÀΰøÁö´É ±â°èÇнÀ ¿¬±¸µ¿Çâ
°­Àμº(Kang, In Sung) ; ¹®Áø¿ì(Moon, Jin Woo) ; ¹ÚÁøÃ¶(Park, Jin Chul) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.33 No.04 (201704)
CFD ½Ã¹Ä·¹À̼ÇÀ» ÅëÇÑ ´ÜÁöÀ¯Çüº° ¹Ù¶÷±æ ºÐ¼®
±èÅ¿ø(Kim, Tae-Won) ; °­Àμº(Kang, In-Sung) ; ÃÖÀºÁö(Chio, Eun-Ji) ; Á¤¹ÎÈñ(Chung, Min-Hee) - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.37 No.1 (201704)
¿ø³» °ø±â°¨¿° È®»ê ¹æÁö¸¦ À§ÇÑ °Ý¸®º´½ÇÀÇ CFD ÇØ¼®
¾ç¿µ±Ç(Yang, Young Kwon) ; °­Àμº(Kang, In Sung) ; ¿ø¾È³ª(Won, An-Na) ; ȲÁ¤ÇÏ(Hang, Jung Ha) ; ¹ÚÁøÃ¶(Park, Jin Chul) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.33 No.03 (201703)
¿­ ±³È¯ ¼ÒÀÚ Çü»óÀÇ CFD ½Ã¹Ä·¹À̼ÇÀ» ÅëÇÑ ÆÇÇü Àü¿­ ±³È¯±â ¼º´ÉÆò°¡
°­Àμº(In-Sung Kang) ; ¾ÈŰæ(Tae-Kyung Ahn) ; ¹ÚÁøÃ¶(Jin-Chul Park) - ¼³ºñ°øÇÐ³í¹®Áý : Vol.29 No.01 (201701)
[ƯÁý¿ø°í] ÀΰøÁö´É ±â¹Ý °Ç¹° ȯ°æÁ¦¾î Á¶»ç ¹× ¿¬±¸»ç·Ê
¹®Áø¿ì ; °­Àμº ; ÀÌÈ¿Àº - ¼³ºñ | °øÁ¶ ³Ãµ¿ À§»ý(Çѱ¹¼³ºñ±â¼úÇùȸÁö) : Vol.34 No.01 (201701)
CFD¸¦ ÀÌ¿ëÇÑ ÃʰíÃþ°Ç¹°ÀÇ À¯Çüº° dz¾ÐºÐÆ÷ ºÐ¼®
°­Àμº(In Sung Kang) ; ¾ç¿µ±Ç(Young Kwon Yang) ; ¹ÚÁøÃ¶(Jin Chul Park) - ´ëÇѼ³ºñ°øÇÐȸ µ¿°èÇмú¹ßǥȸ ³í¹®Áý : (201611)
ÃÖ±Ù °ÇÃ๰¿¡¼­ÀÇ ÀΰøÁö´É ºÐ¾ß ¿¬±¸µ¿Çâ
°­Àμº(Kang, In Sung) ; Á¤¹ÎÈñ(Chung, Min Hee) ; ¹®Áø¿ì(Moon, Jin Woo) ; ¹ÚÁøÃ¶(Park, Jin Chul) - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.36 No.2 (201610)