°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇѼ³ºñ°øÇÐȸ|¼³ºñ°øÇÐ³í¹®Áý 2025³â 1¿ù

³í¹®¸í ¾×ü½Ä ¹«Ã¢Çü °Ç¹°ÀÏüÇü ž籤¿­(BIPVT)½Ã½ºÅÛÀÇ Áý¿­ ±¸¼º¿¡ µû¸¥ ¿­/Àü±â ¼º´É Æò°¡ / Thermal and Electrical Performance Evaluation of Uncovered Building-integrated Photovoltaic and Thermal (BIPVT) Systems
ÀúÀÚ¸í ÀÌ¿ÕÁ¦(Wangje Lee) ; ¾È¿µ¼·(Youngsub An) ; ÁÖÈ«Áø(Hongjin Joo) ; ±èÁ¾±Ô(Jongkyu Kim) ; ±èµæ¿ø(Deukwon Kim ,Minhwi Kim) ; ±è¹ÎÈÖ()½Äº°ÀúÀÚ
¹ßÇà»ç ´ëÇѼ³ºñ°øÇÐȸ
¼ö·Ï»çÇ× ¼³ºñ°øÇÐ³í¹®Áý, Vol.37 No.01 (2025-01)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(35) ÃÑÆäÀÌÁö(8)
ISSN 1229-6422
ÁÖÁ¦ºÐ·ù ȯ°æ¹×¼³ºñ
ÁÖÁ¦¾î °Ç¹°ÀÏüÇü ž籤¿­ Áý¿­±â; Àü±âÈ¿À²; ¸ñ¾÷ ¼³ºñ; ¿­ È¿À² ; BIPVT; Electrical efficiency; Mockup facility; Thermal performance
¿ä¾à1 º» ¿¬±¸¿¡¼­´Â Áý¿­ ±¸¼ºÀÌ ´Ù¸¥ ¾×ü½Ä ¹«Ã¢Çü BIPVTÁý¿­±â¿Í Ŀư¿ù ±¸Á¶¸¦ °°Àº ¸ñ¾÷¼³ºñ¸¦ Á¦ÀÛÇÏ¿© ¿­ ¹× Àü±â ¼º´ÉÀ» Æò°¡ÇÏ¿´´Ù. ºÐ¼®¹æ¹ýÀº °³¹ßÇÑ PVTÁý¿­±â 3°¡Áö¿Í À̸¦ ºñ±³Çϱâ À§ÇÑ ±âÁØ ¸ðµ¨ÀÎ BIPV¸¦ Æ÷ÇÔÇÑ ÃÑ 4°³ÀÇ ¸ðµ¨À» ¸ñ¾÷¼³ºñ¿¡ Á¤³²Çâ ¼öÁ÷¸é¿¡ µ¿ÀÏÇÏ°Ô ¼³Ä¡ÇÏ¿© »ý»ê¿­·® ¹× ¹ßÀü·®, À¯·®¿¡ µû¸¥ ¿­/Àü±â ¼º´É µîÀÇ Æò°¡¸¦ ¼öÇàÇÏ¿´´Ù.
µ¿ÀÏÇÑ ½ÇÇè Á¶°Ç¿¡¼­ PV¸ðµâ ÈĸéÀÇ Ç¥¸é¿Âµµ°¡ BIPVT º¸´Ù BIPV¿¡¼­ ³ô°Ô ³ªÅ¸³µ´Ù. ÀÌ´Â °Ç¹°ÀÏüÇü ž翡³ÊÁö½Ã½ºÅÛ¿¡¼­ Åë±â½Ã½ºÅÛÀÌ ¾ø°Å³ª Àß ÀÛµ¿ÇÏÁö ¾ÊÀ» °æ¿ì, BIPVT½Ã½ºÅÛÀÌ BIPV½Ã½ºÅÛ º¸´Ù Àü±â¼º´É Ãø¸é¿¡¼­µµ À¯¸®ÇÒ ¼ö ÀÖÀ½À» ÀǹÌÇÑ´Ù. ¶ÇÇÑ, °³¹ßÇÑ BIPVT½Ã½ºÅÛ¿¡¼­ Áý¿­±â ±¸¼º¿¡ µû¶ó ¿­¼º´ÉÀÇ Â÷À̰¡ Å©°Ô ³ªÅ¸³µ´Ù. ÀÌ´Â PV¿Í Èí¼öÆÇ ¶Ç´Â È÷Æ®ÆÄÀÌÇÁÀÇ ¿­Àü´Þ ¸Åü´Â °°Áö¸¸, È÷Æ®½ÌÅ©¿Í µ¿°ü ¹× ¸Å´ÏÆúµåÀÇ ÀçÁú ¹× µÎ²²¿Í ¿­Àü´Þ ¹æ½Ä¿¡ µû¸¥ ¿­¼Õ½Ç ¿µÇâÀ¸·Î ºÐ¼®µÇ¾ú´Ù. °Ç¹°¿¡ Àû¿ëµÈ ¾×ü½Ä ¹«Ã¢Çü BIPVTÁý¿­±â¿¡¼­ »ý»êµÇ´Â ¿­À» 40¡ÉÀÌÇÏÀÇ Àú¿Â ȤÀº ³­¹æ ¹× ±ÞÅÁ¿ë È÷Æ®ÆßÇÁÀÇ ¿­¿øÀ¸·Î ¿î¿µÇÒ ¼ö ÀÖ´Ù¸é ¿­»ý»ê·® Áõ´ë¿Í ÇÔ²² Àü±â»ý»ê·®¿¡µµ ±àÁ¤Àû ¿µÇâÀ» ÁÖ¾î, Á¾ÇÕÈ¿À²¿¡¼­ º¸´Ù ³ôÀº ½Ã½ºÅÛ È¿À²À» º¸ÀÏ °ÍÀ¸·Î ÆÇ´ÜµÈ´Ù.
º» ¿¬±¸¸¦ ÅëÇØ Case (1)ÀÇ ±¸¼ºÀÌ °¡Àå ÁÁÀº Á¾ÇÕÈ¿À²À» ³ªÅ¸³»¾ú´Ù. ÇÏÁö¸¸, Case (1)°ú °°Àº ±âÁ¸ PVTÀÇ °æ¿ì ÆÐ³Î°£ ¹è°ü¿¬°á½Ã Á¶ÀÎÆ®°¡ ¹ß»ýÇÏ¿© °Ü¿ïö ´©¼ö°¡ ¹ß»ýÇÒ ¿ì·Á°¡ Å©´Ù. ÀÌ¿¡ ¹ÝÇØ Case (2)´Â ¿©·¯ ÆÐ³Î°£ ¿¬°á½Ã ÇϳªÀÇ ¹è°üÀ¸·Î °¡´ÉÇϹǷÎ, ´©¼öÀÇ À§ÇèÀÌ Àû¾î °Ç¹° ¿Üº®¿¡ Àû¿ë½Ã À¯¸®ÇÑ ÀåÁ¡ÀÌ ÀÖ°í, È¿À² ¶ÇÇÑ, 19.8%·Î °Ç¹° ¿¡³ÊÁöÈ¿À² Áõ´ë¿¡ ±â¿©ÇÒ ¼ö ÀÖÀ» °ÍÀ¸·Î ÆÇ´ÜµÈ´Ù.
ÀÌ¿Í °°ÀÌ BIPVTÁý¿­±â´Â Áý¿­±â ±¸¼º¿¡ µû¶ó ¿­ ¹× ¹ßÀü¼º´É¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù. À̹ø ½ÇÇè°á°ú¸¦ ¹ÙÅÁÀ¸·Î BIPVTÀÇ È¿À²À» °³¼±Çϱâ À§ÇØ ¸Å´ÏÆúµå ¹× È÷Æ®ÆÄÀÌÇÁ, ¿­±³È¯ ¸éÀû, ±æÀÌ µîÀ» º¸¿ÏÇÏ¿© ¿¬±¸¸¦ Áö¼ÓÀûÀ¸·Î ¼öÇàÇÒ ¿¹Á¤ÀÌ´Ù.
¿ä¾à2 This study evaluates the thermal and electrical performance of roofless building-integrated photovoltaic and thermal (BIPVT) systems, focusing on three liquid collector systems. A full-scale mock-up simulating a curtain wall structure was developed to test these systems. The three BIPVT configurations are as follows Case (2) incorporates manifolds and plate heat pipes in contact with the tubes, and Case (3) uses manifolds and plate heat pipes in direct contact through a perforated structure. The thermal efficiencies ranged from 21.2% to 32% for Case (1), 7.6% to 13.6% for Case (2), and 3.7% to 9.4% for Case (3). The combined efficiency, including electrical power, was highest for Case (1) at 34.8%, followed by Case (2) at 19.8% and Case (3) at 17.2%. These results indicate that Case (1) provided the most effective heat collection and power generation, attributed to the larger heat transfer area of the absorber mechanism compared to the heat pipe. Overall, this study demonstrates that BIPVT systems, especially Case (1), offer significant potential for improving the energy efficiency of buildings. However, Case (2) provides advantages for building integration by eliminating the panel-to-panel joints on the building facade, which significantly reduces the risk of leakage. Case (2) is also a viable option for enhancing energy efficiency in buildings, particularly in terms of long-term structural integrity and maintenance.
¼ÒÀåó ´ëÇѼ³ºñ°øÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.6110/KJACR.2025.37.1.35