°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

Çѱ¹ÄÜÅ©¸®Æ®ÇÐȸ|IJCSM 2024³â 11¿ù

³í¹®¸í Enhancing the Flexural Capacity of Deteriorated Low-Strength Prestressed Concrete Beam Using Near-Surface Mounted Post-Tensioned Carbon Fiber-Reinforced Polymer Bar
ÀúÀÚ¸í (Sanghyeon Cho) ; (Wonseok Chung) ; (Woo-tai Jung) ; (Jong-sup Park) ; (Heeyoung Lee)
¹ßÇà»ç Çѱ¹ÄÜÅ©¸®Æ®ÇÐȸ
¼ö·Ï»çÇ× IJCSM, Vol.18 No.6 (2024-11)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(1119) ÃÑÆäÀÌÁö(19)
ISSN 1976-0485
ÁÖÁ¦ºÐ·ù Àç·á / ±¸Á¶
ÁÖÁ¦¾î ; PSC; Near-surface mounted; Post-tensioned CFRP; Flexural capacity; Finite-element analysis
¿ä¾à2 This study aimed to address the critical issue of age deterioration in prestressed concrete (PSC) structures by investigating the strengthening of aged PSC structures using a near-surface mounted (NSM) post-tensioned carbon fiber-reinforced polymer (CFRP). A total of nine PSC beams, each with a length of 6.5 m, were fabricated for a four-point bending test. Various experimental parameters were taken into account, including the strengthening method, compressive strength of concrete in the PSC beam, and the prestressing force of the PSC beam. The results indicated that the NSM post-tensioned CFRP strengthening system proved more efficient when compared to the NSM non-post-tensioned CFRP strengthening system. The flexural capacity of the NSM post-tensioned CFRP strengthening system, under the deteriorated low-strength PSC beam, increased by up to 30.9% compared to the PSC reference beam. Additionally, the experimental results were compared to a finite-element analysis, and a parametric study was conducted to examine the material properties of the PSC beam. Consequently, the NSM post-tensioned CFRP strengthening system is expected to be an effective solution for addressing the issue of deteriorated low-strength PSC structures.
¼ÒÀåó Çѱ¹ÄÜÅ©¸®Æ®ÇÐȸ
¾ð¾î ¿µ¾î
DOI https://doi.org/10.1186/s40069-024-00695-8