°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇÑ°ÇÃàÇÐȸ|³í¹®Áý 2024³â 9¿ù

³í¹®¸í AutoML ±â¹ÝÀÇ ÀÌÁø, ´ÙÁß ºÐ·ù ¸ðµ¨ ±¸ÃàÀ» ÅëÇÑ °Ç¼³ »ç°í ¹ß»ý ¹× À¯Çü ¿¹Ãø / Predicting Construction Safety Accidents and Types Using AutoML-based Binary and Multi-class Classification Models
ÀúÀÚ¸í ÀüÁ¤È£(Jeon, JungHo) ; ÃÖ¼ö¿¬(Choi, SuYeon) ; À±¼º¹è(Yun, SeongBae) ; ¿ë¼±Áø(Yong, SunJin) ; Ç㿵±â(Huh, YoungKi)
¹ßÇà»ç ´ëÇÑ°ÇÃàÇÐȸ
¼ö·Ï»çÇ× ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý, Vol.40 No.9 (2024-09)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(247) ÃÑÆäÀÌÁö(8)
ISSN 2733-6247
ÁÖÁ¦ºÐ·ù ½Ã°ø(Àû»ê)
ÁÖÁ¦¾î °Ç¼³¾ÈÀü;»ç°í ¿¹Ãø;¸Ó½Å·¯´×;ÀÌÁøºÐ·ù;´ÙÁߺзù;¿ÀÅä¿¥¿¤ ; Construction Safety;Accident Prediction;Machine Learning;Binary Classification;Multi-class Classification;AutoML
¿ä¾à1 AutoMLÀ» »ç¿ëÇØ CSI µ¥ÀÌÅͺ£À̽º ±â¹ÝÀÇ ÀÌÁø(»ç¸Á, ºÎ»ó) ¹× ´ÙÁß Å¬·¡½º(Ã߶ô, Ãæµ¹ µî) ºÐ·ù ¸ðµ¨À» °³¹ßÇÏ´Â °ÍÀ» ¸ñÀûÀ¸·Î, 2019³âºÎÅÍ 2024³â 2¿ù±îÁö ¼öÁýµÈ 235,665°ÇÀÇ »ç°í µ¥ÀÌÅ͸¦ ºÐ¼®ÇØ 18°³ÀÇ ÁÖ¿ä »ç°í ¿äÀÎÀ» ÃßÃâÇÏ¿´´Ù. ÀÌÁø ºÐ·ù ¸ðµ¨Àº ET ¾Ë°í¸®ÁòÀ¸·Î 95.9%ÀÇ Á¤È®µµ¿Í 0.2771ÀÇ F1 Á¡¼ö¸¦, ´ÙÁß Å¬·¡½º ºÐ·ù ¸ðµ¨Àº LGBM ¾Ë°í¸®ÁòÀ¸·Î 57.4%ÀÇ Á¤È®µµ¿Í 0.5503ÀÇ F1 Á¡¼ö¸¦ ±â·ÏÇÏ¿´´Ù. »ç°í °´Ã¼´Â µÎ ¸ðµ¨ ¸ðµÎ¿¡¼­ °¡Àå Áß¿äÇÑ ¿äÀÎÀ¸·Î ³ªÅ¸³µ´Ù.
¿ä¾à2 In 2022, the construction industry accounted for nearly half of all fatal accidents across sectors in South Korea. This study aims to develop
binary like fatality and injury and multi-class such as fall and struck-by classification models using AutoML to predict the occurrence and
types of construction accidents, based on data from the Construction Safety Integrated Management System (CSI) database. The dataset,
consisting of 235,665 accident cases from January 2019 to February 2024, includes 54 types of information, with 18 influential accident
factors identified. Preprocessed data were trained and tested using AutoML to determine optimal algorithms and influencing factors. Accuracy,
precision, recall, and F1 score metrics were used for validation. The binary classification model for predicting fatalities and injuries,
developed using the Extra Trees (ET) algorithm, achieved the highest accuracy of 95.9% and an F1 score of 0.2771. For predicting accident
types, the multi-class classification model using the LightGBM (LGBM) algorithm recorded the highest accuracy of 57.4% and an F1 score
of 0.5503. Feature importance analysis revealed that the accident object was the most critical factor in both models. This research is expected
to enhance safety management performance by efficiently identifying the likelihood and types of construction accidents.
¼ÒÀåó ´ëÇÑ°ÇÃàÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.5659/JAIK.2024.40.9.247