³í¹®¸í |
AutoML ±â¹ÝÀÇ ÀÌÁø, ´ÙÁß ºÐ·ù ¸ðµ¨ ±¸ÃàÀ» ÅëÇÑ °Ç¼³ »ç°í ¹ß»ý ¹× À¯Çü ¿¹Ãø / Predicting Construction Safety Accidents and Types Using AutoML-based Binary and Multi-class Classification Models |
ÀúÀÚ¸í |
ÀüÁ¤È£(Jeon, JungHo) ; ÃÖ¼ö¿¬(Choi, SuYeon) ; À±¼º¹è(Yun, SeongBae) ; ¿ë¼±Áø(Yong, SunJin) ; Ç㿵±â(Huh, YoungKi) |
¼ö·Ï»çÇ× |
´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý, Vol.40 No.9 (2024-09) |
ÆäÀÌÁö |
½ÃÀÛÆäÀÌÁö(247) ÃÑÆäÀÌÁö(8) |
ÁÖÁ¦¾î |
°Ç¼³¾ÈÀü;»ç°í ¿¹Ãø;¸Ó½Å·¯´×;ÀÌÁøºÐ·ù;´ÙÁߺзù;¿ÀÅä¿¥¿¤ ; Construction Safety;Accident Prediction;Machine Learning;Binary Classification;Multi-class Classification;AutoML |
¿ä¾à1 |
AutoMLÀ» »ç¿ëÇØ CSI µ¥ÀÌÅͺ£À̽º ±â¹ÝÀÇ ÀÌÁø(»ç¸Á, ºÎ»ó) ¹× ´ÙÁß Å¬·¡½º(Ã߶ô, Ãæµ¹ µî) ºÐ·ù ¸ðµ¨À» °³¹ßÇÏ´Â °ÍÀ» ¸ñÀûÀ¸·Î, 2019³âºÎÅÍ 2024³â 2¿ù±îÁö ¼öÁýµÈ 235,665°ÇÀÇ »ç°í µ¥ÀÌÅ͸¦ ºÐ¼®ÇØ 18°³ÀÇ ÁÖ¿ä »ç°í ¿äÀÎÀ» ÃßÃâÇÏ¿´´Ù. ÀÌÁø ºÐ·ù ¸ðµ¨Àº ET ¾Ë°í¸®ÁòÀ¸·Î 95.9%ÀÇ Á¤È®µµ¿Í 0.2771ÀÇ F1 Á¡¼ö¸¦, ´ÙÁß Å¬·¡½º ºÐ·ù ¸ðµ¨Àº LGBM ¾Ë°í¸®ÁòÀ¸·Î 57.4%ÀÇ Á¤È®µµ¿Í 0.5503ÀÇ F1 Á¡¼ö¸¦ ±â·ÏÇÏ¿´´Ù. »ç°í °´Ã¼´Â µÎ ¸ðµ¨ ¸ðµÎ¿¡¼ °¡Àå Áß¿äÇÑ ¿äÀÎÀ¸·Î ³ªÅ¸³µ´Ù. |
¿ä¾à2 |
In 2022, the construction industry accounted for nearly half of all fatal accidents across sectors in South Korea. This study aims to develop binary like fatality and injury and multi-class such as fall and struck-by classification models using AutoML to predict the occurrence and types of construction accidents, based on data from the Construction Safety Integrated Management System (CSI) database. The dataset, consisting of 235,665 accident cases from January 2019 to February 2024, includes 54 types of information, with 18 influential accident factors identified. Preprocessed data were trained and tested using AutoML to determine optimal algorithms and influencing factors. Accuracy, precision, recall, and F1 score metrics were used for validation. The binary classification model for predicting fatalities and injuries, developed using the Extra Trees (ET) algorithm, achieved the highest accuracy of 95.9% and an F1 score of 0.2771. For predicting accident types, the multi-class classification model using the LightGBM (LGBM) algorithm recorded the highest accuracy of 57.4% and an F1 score of 0.5503. Feature importance analysis revealed that the accident object was the most critical factor in both models. This research is expected to enhance safety management performance by efficiently identifying the likelihood and types of construction accidents. |