³í¹®¸í |
´ë±Ô¸ð ¾ð¾î¸ðµ¨(LLM)À» È°¿ëÇÑ °ÇÃà¹Î¿ø ´ëÀÀ È¿À²È ¹æ¾È ¿¬±¸ / A Study on the Efficient Response to Architectural Civil Complaints Using Large Language Models(LLM) |
ÀúÀÚ¸í |
Á¶»ó±Ô(Cho, Sang-Kyu) ; ±è½Å¼º(Kim, Shin-Sung) |
¼ö·Ï»çÇ× |
´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý, Vol.40 No.9 (2024-09) |
ÆäÀÌÁö |
½ÃÀÛÆäÀÌÁö(81) ÃÑÆäÀÌÁö(10) |
ÁÖÁ¦¾î |
ÀΰøÁö´É;´ë±Ô¸ð ¾ð¾î¸ðµ¨;°ÇÃà¹ý;ÁúÀÇÀÀ´ä;¹ý·ÉÇؼ®Á¦µµ;º¤Å͵¥ÀÌÅͺ£À̽º ; Artificial Intelligence;Large Language Model;Architectural Law;Legal Interpretation System;Vector Database |
¿ä¾à1 |
ÀÌ ¿¬±¸´Â °ÇÃà ¹ý±ÔÀÇ º¹À⼺°ú ÇàÁ¤Àû ºÎ´ãÀ» ÁÙÀ̱â À§ÇØ ´ë±Ô¸ð ¾ð¾î ¸ðµ¨À» »ç¿ëÇÑ SPARC ¸ðµ¨À» °³¹ßÇß´Ù. ±¹Åä±³ÅëºÎÀÇ ÀڷḦ È°¿ëÇÏ¿© ¹ýÀû Çؼ®ÀÇ È¿À²¼ºÀ» ³ô¿´À¸¸ç, ½Ã½ºÅÛÀº ÀÏ¹Ý ¹®ÀÇ¿¡ ´ëÇØ 80% ÀÌ»ó, º¹ÀâÇÑ »ç·Ê¿¡ ´ëÇؼ´Â 70%¿¡¼ 100%ÀÇ Á¤È®µµ¸¦ ´Þ¼ºÇß´Ù. ÀÌ´Â ±ÔÁ¦ ÇàÁ¤¿¡ AI¸¦ Àû¿ëÇÑ Ã¹ »ç·ÊÀÌ´Ù. |
¿ä¾à2 |
This study addresses the complexity of architectural laws and regulations and their administrative burden, focusing on improving efficiency in the interpretation and query-response processes using large-scale language models. The research centers around the development and implementation of the SPARC (Semantic Processing for Architecture Regulation Compliance) engine, primarily utilizing data from inquiries and complaints submitted to the Ministry of Land, Infrastructure, and Transport regarding architectural laws. This prototype system is designed to augment reference information necessary for legal interpretation, and its effectiveness was validated through a quality assessment of system responses to actual complaint data. The results show that the system achieved an accuracy rate of over 80% for general inquiry complaints with clear conclusions and 70% to 100% for more complex cases requiring legal interpretation by the legislative affairs office. This research represents the first attempt to apply AI in the field of regulatory administration, providing a critical technical and policy foundation for the development and operation of AI-based systems for interpreting architectural regulations. |