°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

Çѱ¹°ÇÃà½Ã°øÇÐȸ|³í¹®Áý 2024³â 6¿ù

³í¹®¸í ¾ÆÆÄÆ® ¼ö¼±À¯Áö ºñ¿ë ¿¹ÃøÀ» À§ÇÑ µö·¯´× ÇÁ·¹ÀÓ¿öÅ© Á¦¾È / A Deep Learning Framework for Prediction of Apartment Repair and Maintenance Costs
ÀúÀÚ¸í ±èÁö¸í(Kim, Ji-Myong) ; ¼Õ½ÂÇö(Son, Seunghyun)
¹ßÇà»ç Çѱ¹°ÇÃà½Ã°øÇÐȸ
¼ö·Ï»çÇ× Çѱ¹°ÇÃà½Ã°øÇÐȸ ³í¹®Áý, Vol.24 No.3 (2024-06)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(355) ÃÑÆäÀÌÁö(8)
ISSN 15982033
ÁÖÁ¦ºÐ·ù ½Ã°ø(Àû»ê)
ÁÖÁ¦¾î ½Ã¼³°ü¸®; µö·¯´× ¾Ë°í¸®Áò; ¾ÆÆÄÆ®´ÜÁö; ¼ö¼±À¯Áö ºñ¿ë ; facility management; deep learning algorithm; apartment complex; repair and maintenance cost
¿ä¾à1 º» ¿¬±¸ÀÇ ÁÖ¿ä ¸ñÇ¥´Â ¾ÆÆÄÆ® ´ÜÁö ¼ö¼±À¯Áö ºñ¿ëÀ» ¿¹ÃøÇϱâ À§ÇØ µö·¯´× ±â¹ýÀ» Àû¿ëÇÑ ¿¹Ãø ¸ðµ¨ ±¸Ãà ÇÁ·¹ÀÓ¿öÅ©¸¦Á¦¾ÈÇÏ´Â °ÍÀÌ´Ù. ¾ÆÆÄÆ® °Ç¹°À» ÀÌ»óÀûÀÎ »óÅ·Π°ü¸®Çϱâ À§Çؼ­´Â Áö¼ÓÀûÀÎ À¯Áö ¹× ½ÃÀÇÀûÀýÇÑ ¼ö¸®°¡ ÇʼöÀûÀÌ´Ù. ¾ÆÆÄÆ® ´ÜÁö´Â ±¤¹üÀ§ÇÑ ¸éÀû, °øµ¿ ½Ã¼³, ´Ù¼öÀÇ ÁÖ°Å µ¿, ¼­ºñ½º Áö¿ª µîÀ¸·Î ÀÎÇØ À¯Áö°ü¸®°¡ º¹ÀâÇÏ´Ù. ¶ÇÇÑ, ¾ÆÆÄÆ®ÀÇ ¾ÈÀü¼º º¸Àå, °¡Ä¡ À¯Áö ¹× °æÁ¦Àû È¿À²¼º ¶§¹®¿¡ °æÁ¦ÀûÀ̰í ÇÕ¸®ÀûÀÎ À¯Áöº¸¼öÀÇ Á߿伺ÀÌ Á¡Á¡ Ä¿Áö°í ÀÖ´Ù. ±×·¯³ª ¾ÆÆÄÆ® ´ÜÁö ¼ö¼±À¯Áö´Â ´Ù¾çÇÑ ¿ÜºÎ ¿äÀÎÀÇ ¿µÇâÀ» ¹Þ°í µ¥ÀÌÅÍ ¼öÁýÀÌ ¾î·Á¿ö ¿¬±¸°¡ ºÎÁ·ÇÑ »óȲÀÌ´Ù. µû¶ó¼­ º» ¿¬±¸´Â ½ÇÁ¦ ¾ÆÆÄÆ® ´ÜÁö À¯Áöº¸¼ö ºñ¿ë µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î µö·¯´× ±â¹ýÀ» Ȱ¿ëÇØ À¯Áöº¸¼ö ºñ¿ëÀ» ¿¹ÃøÇÏ´Â ¸ðµ¨ °³¹ß ÇÁ·¹ÀÓ¿öÅ©¸¦ Á¦½ÃÇϰíÀÚ ÇÑ´Ù. º» ¿¬±¸ÀÇ ÇÁ·¹ÀÓ¿öÅ© ¹× °á°ú´Â ½ÇÁúÀûÀ¸·Î ¾ÆÆÄÆ® ´ÜÁöÀÇ À¯Áöº¸¼ö ºñ¿ë ¿¹Ãø¿¡ Ȱ¿ëµÉ ¼ö ÀÖÀ¸¸ç, ±Ã±ØÀûÀ¸·Î¾ÆÆÄÆ® ´ÜÁöÀÇ ½Ã¼³ °ü¸® Çâ»ó¿¡ ±â¿©ÇÒ °ÍÀÌ´Ù.
¿ä¾à2 The sustained upkeep of apartment buildings necessitates ongoing maintenance and timely repairs,particularly given their complex nature due to extensive areas, common facilities, and multipleresidential and service structures. Additionally, the need for cost-effective maintenance is paramountfor ensuring safety, preserving value, and maintaining economic efficiency. However, the multitude ofexternal variables influencing apartment complex maintenance, coupled with the challenges in datacollection, have resulted in limited research in this domain. To address this gap, the current study aimsto develop a framework for predicting maintenance costs utilizing deep learning techniques, groundedin real-world apartment complex maintenance cost data. This study intends to provide a practical andvaluable contribution to the field of apartment complex management, empowering stakeholders withenhanced predictive capabilities for optimizing maintenance strategies and resource allocation.
¼ÒÀåó Çѱ¹°ÇÃà½Ã°øÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.5345/JKIBC.2024.24.3.355