건축도시공간연구소

Architecture & Urban Research Institute

pdf원문보기 에러 해결방법 바로가기



문헌홈 > 연구논문 > 상세

[원문보기시 소비되는 포인트 : 100 포인트] 미리보기 인용

한국건설관리학회|논문집 2024년 3월

논문명 Edge 분석과 ROI 기법을 활용한 콘크리트 균열 분석 - Edge와 ROI를 적용한 콘크리트 균열 분석 및 검사 - / Edge Detection and ROI-Based Concrete Crack Detection
저자명 박희원식별저자 ; 이동은
발행사 한국건설관리학회
수록사항 한국건설관리학회 논문집, Vol.25 No.2 (2024-03)
페이지 시작페이지(36) 총페이지(9)
ISSN 2005-6095
주제분류 시공(적산)
주제어 합성곱 신경망; 콘크리트 균열; 관심영역; 에지 세그멘테이션; 수동 검사 ; CNN; Concrete Crack; ROI; Edge Segmentation; Manual Inspection
요약1 본 논문에서는 합성곱신경망과 ROI기법을 이용한 콘크리트 균열 분석에 관해 소개한다. 콘크리트 표면, 빔과 같은 구조물은 피로 응력, 주기 부하에 노출되며, 이는 일반적으로 구조물의 표면에서 미세한 수준에서 시작되는 균열을 야기한다. 구조물의 균열은 안정성을 저하시키고 구조물의 견고함을 감소시킨다. 조기 발견을 통해 손상 및 고장 가능성을 방지하기 위한 예방 조치를 취할 수 있다. 일반적으로 수동 검사 결과는 품질이 좋지 않고, 대규모 기반 시설의 경우 접근이 어려우며, 균열을 정확하게 감지하기 어렵다. 이러한 수동검사의 자동화는 기존 방식의 한계를 해결할 수 있기 때문에 컴퓨터 비전 기반의 연구들이 수행되었다. 하지만 다양한 유형의 균열이나, 열화상 카메라 등을 이용한 연구들은 부족한 상태이다. 따라서 본 연에서는 콘크리트 벽의 균열을 자동으로 감지하는 방법론을 개발하여 제시하며, 다음과 같은 연구 내용을 목표로 한다. 첫째, 균열 감지 이미지 기반 분석의 주요 장점인 이미지 처리 기술을 사용하여 기존의 수동 방법과 비교하여 정확도가 향상된 결과 및 정보를 제공한다. 둘째, 강화된 Sobel edge segmentation 기술 및 ROI 기법 기반의 알고리즘을 개발하여 비파괴 시험을 위한 자동 균열 감지 기술을 구현한다.
요약2 This paper presents the application of Convolutional Neural Networks (CNNs) and Region of Interest (ROI) techniques for concrete crack analysis. Surfaces of concrete structures, such as beams, etc., are exposed to fatigue stress and cyclic loads, typically resulting in the initiation of cracks at a microscopic level on the structure's surface. Early detection enables preventative measures to mitigate potential damage and failures. Conventional manual inspections often yield subpar results, especially for large-scale infrastructure where access is challenging and detecting cracks can be difficult. This paper presents data collection, edge segmentation and ROI techniques application, and analysis of concrete cracks using Convolutional Neural Networks. This paper aims to achieve the following objectives: Firstly, achieving improved accuracy in crack detection using image-based technology compared to traditional manual inspection methods. Secondly, developing an algorithm that utilizes enhanced Sobel edge segmentation and ROI techniques. The algorithm provides automated crack detection capabilities for non-destructive testing.
소장처 한국건설관리학회
언어 한국어
DOI https://dx.doi.org/10.6106/KJCEM.2024.25.2.036
■ 제 1 저자의 다른 문헌 식별저자더보기
[학술기사] 빌딩에 작용하는 공력 특성의 통계 분석
박희원(Park Heewon) ; 유바라지나타라잔(Yuvaraj Natarajan) ; 김법렬(Kim Bubryur) - 한국공간구조학회지 : Vol. 19, No. 4 (통권 78호) (201912)