°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇÑ°ÇÃàÇÐȸ|³í¹®Áý 2023³â 8¿ù

³í¹®¸í °ÇÃ๰ ¿Ü°üÀÇ °´°üÀû À¯ÇüÈ­¸¦ À§ÇÑ µö·¯´×ÀÇ È°¿ë / Objective Typification of Building Exteriors Using Deep Learning
ÀúÀÚ¸í ¾ÈÁ¾±Ô(An, Jong-Gyu)½Äº°ÀúÀÚ ; Á¶Ç׸¸(Zo, Hangman)
¹ßÇà»ç ´ëÇÑ°ÇÃàÇÐȸ
¼ö·Ï»çÇ× ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý, Vol.39 No.8 (2023-08)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(37) ÃÑÆäÀÌÁö(12)
ISSN 2733-6247
ÁÖÁ¦ºÐ·ù °èȹ¹×¼³°è / Àü»ê
ÁÖÁ¦¾î ÇÕ¼º°ö½Å°æ¸Á; k-Æò±Õ Ŭ·¯½ºÅ͸µ; À¯ÇüÇÐ ; CNN; k-means clustering; Typology
¿ä¾à1 º» ¿¬±¸´Â µö·¯´×À» È°¿ëÇÏ¿© °ÇÃ๰ÀÇ ¿Ü°ü À̹ÌÁö¸¦ ±âÁØÀ¸·Î °´°üÀûÀÎ À¯ÇüÈ­¸¦ ÇÒ ¼ö ÀÖ´Â ¹æ¹ý·ÐÀ» °³¹ßÇÏ¿´´Ù. ±âÁ¸ÀÇ À¯ÇüÈ­´Â ºÐ¼®ÀÚÀÇ ÁÖ°ü¿¡ ÀÇÁ¸ÇÏ°í ºÐ¼® ´ë»óÀÇ ¼ö¿¡ ÇÑ°è°¡ ÀÖ¾ú´Ù. µû¶ó¼­ º» ¿¬±¸¿¡¼­´Â °ø°øû»ç¸¦ Áß½ÉÀ¸·Î µö·¯´×À» È°¿ëÇÑ °´°üÀûÀÎ ¿Ü°ü À¯ÇüÈ­ ¹æ¹ý·ÐÀ» ±¸ÃàÇÏ¿´´Ù. À̸¦ À§ÇÏ¿© ÀÏÂ÷ÀûÀ¸·Î, ±¹³» °ø°øû»ç¿¡ ´ëÇÑ Àü¼öÁ¶»ç¸¦ ÇÏ°í À̹ÌÁö µ¥ÀÌÅͼÂÀ» ±¸ÃàÇÏ¿´´Ù. ´ÙÀ½À¸·Î, µö·¯´× ¸ðµ¨ Áß CNNÀ» È°¿ëÇÏ¿© û»ç À̹ÌÁö Ư¡À» ÇнÀÇÏ´Â ¸ðµ¨À» ¼ö¸³ÇÏ¿´´Ù. CNN ¸ðµ¨¿¡¼­ ºÐ·ùÇÑ feature¸¦ ¹ÙÅÁÀ¸·Î k-means clusteringÀ» ÅëÇØ ÃÖÁ¾ÀûÀ¸·Î À¯ÇüÈ­ÇÏ¿´´Ù. À¯ÇüÈ­ °á°ú °¢ cluster °£ À¯»çµµ¸¦ ÅëÇØ clusterº° Ư¡À» ºÐ¼®ÇÒ ¼ö ÀÖ¾ú°í, ³ôÀÌ, ÀÔ¸é ÆÐÅÏ, Àç·á, ÀÔ¸é µ¹Ãâ ¹× ÁöºØ ±¸Á¶¶ó´Â ºÐ·ù ±âÁØÀ» ¼ö¸³ÇÒ ¼ö ÀÖ¾ú´Ù. ¼±Ç࿬±¸¿ÍÀÇ ºñ±³ ºÐ¼®À» ÅëÇØ º» ¿¬±¸ÀÇ ¹æ¹ý·ÐÀº °ËÁõµÇ¾úÀ¸¸ç, ÀÌ·¯ÇÑ ¿¬±¸ °á°ú´Â °ø°øû»ç ÇöȲ ºÐ¼®ÀÇ ±âÃÊ ¿¬±¸ ¹× ´Ù¾çÇÑ °ÇÃ๰ÀÇ À¯ÇüÈ­ ¿¬±¸¿¡ Àû¿ëµÉ ¼ö ÀÖÀ» °ÍÀÌ´Ù.
¿ä¾à2 This study introduces an objective typification methodology that employs deep learning to analyze the exterior appearances of buildings. The
conventional approach to typification was reliant on subjective analysis and was limited in terms of the number of structures that could be
assessed. This study aimed to overcome these limitations by establishing an objective typification method using deep learning, focusing
specifically on public office buildings. The research process involved a comprehensive survey of domestic public office buildings to compile
an image dataset. Subsequently, a model was constructed utilizing Convolutional Neural Networks (CNN), a form of deep learning, to grasp
the distinctive features of building images. These features, extracted from the CNN model, were then organized into groups through k-means
clustering. The outcome of this clustering enabled the analysis of each cluster¡¯s unique characteristics, facilitating the establishment of
typification criteria such as building height, fa?ade pattern, materials, protrusions, and roof structures. This methodology¡¯s effectiveness was
validated through a comparative analysis with prior research. The results of this study offer potential applications in fundamental
investigations concerning the current state of public office buildings and in typification studies encompassing diverse architectural forms
beyond public office buildings.
¼ÒÀåó ´ëÇÑ°ÇÃàÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.5659/JAIK.2023.39.8.37
ºÐ¼®¼­Áö
°ÇÃà°èȹ ¹× ¼³°è > ¼³°è¹æ¹ý·Ð > Á¤º¸±â¼ú È°¿ë

¡á Ãßõ¹®Çå (ÀÌ ¹®Çå°ú °°ÀÌ º» ¹®Çå)
[½Ã·Ð] 4Â÷ »ê¾÷Çõ¸í ½Ã´ë, °ÇÃàÀÇ ´ëÀÀ
À̸í½Ä(Lee, Myung-Sik) - °ÇÃà(´ëÇÑ°ÇÃàÇÐȸÁö) : Vol.61 No.05 (201705)
ÇÁ·Î±×·¥°ú ´ÙÀ̾î±×·¥ÀÇ Àû¿ëÀ» ÅëÇÑ °ÇÃà ÇüÅ »ý¼º ¿¬±¸
À±Çý°æ(Yoon Hae-Kyung) ; ±èÁÖ¿µ(Kim Ju-Young) ; È«¿øÈ­(Hong Won-Hwa) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý °èȹ°è : v.26 n.02 (201002)
Á¤·®Àû °ø°£ºÐ¼® ±â¹ýÀ» È°¿ëÇÑ ÆÇ»óÇü¤ýŸ¿öÇü ¾ÆÆÄÆ® Æò¸é Ư¼º ºÐ¼®
½ÅÁ¤Àº(Shin, Jeong-Eun) ; ÀÓÈ£±Õ(Lim, Ho-Kyun) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý : Vol.39 No.4 (202304)
°æ±âµµ ¿Ü±¹ÀÎ ±Ù·ÎÀÚ ÁְŽü³ÀÇ ÇöȲ °íÂû
³²ÁöÇö(Nam, Jee-Hyun) ; Á¶ÈñÀº(Jo, Hee-Eun) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý : Vol.39 No.4 (202304)
·½ ÄðÇϽº¿Í Ä«Áî¿ä ¼¼Áö¸¶ °ÇÃà¿¡¼­ ³ªÅ¸³ª´Â ÇÁ·Î±×·¥ÀÇ Á¶Á÷°ú °ø°£±¸¼º ¹æ¹ýÀÇ ºñ±³ºÐ¼®
±Ç°æ¹Î ; ±èÁ¾Áø - Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ ³í¹®Áý : v.16 n.6(Åë±Ç 65È£) (200712)
ÆĶó¸ÞÆ®¸¯ µðÀÚÀÎ ±â¹ý°ú À¯Àü¾Ë°í¸®ÁòÀ» Àû¿ëÇÑ ¼º´É±â¹Ý °øµ¿ÁÖÅà °èȹ ¹æ¹ý ¿¬±¸
Á¤¿äÇÑ(Jeong, Yo-Han) ; ±Ç¿µ»ó(Kwon, Young-Sang) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý : Vol.37 No.12 (202112)
°ÇÃ๰ÀÇ ¿¡³ÊÁöÀý¾à¼³°è±âÁØ °­È­¿¡ µû¸¥ ¾÷¹«¿ë °Ç¹°ÀÇ ¿¡³ÊÁö¼º´É °³¼± È¿°ú
±èÁöÇý(Kim, Ji-Hye) ; ¼ºÁ¦Àº(Sung, Jea-Eun) ; ±èÇý±â(Kim, Hye-Gi) ; ¹Ú´öÁØ(Park, Duk-Joon) ; ±è¼±¼÷(Kim, Sun-Sook) - Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ ³í¹®Áý : Vol.14 No.1 (202002)
½Åµµ½Ã Çб³½Ã¼³ º¹ÇÕÈ­ ÃʵîÇб³ ¼³°èÀÇ °³¼± ¹æÇâ¿¡ °üÇÑ ¿¬±¸
¹®¼±¹Î(Mun, Sun-Min) ; À̼±¿µ(Rieh, Sun-Young) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý : Vol.39 No.7 (202307)
¼­¿ï µµ½ÉºÎ º¸Çà°ø°£ È°¼ºÈ­¸¦ À§ÇÑ »çȸ±â¹Ý½Ã¼³¹° È°¿ë º¸Çà°¡·Îü°è º¯Çü ¹æ½Ä ¿¬±¸
Á¤ÅÂÁ¾(Jeong, Tae-Jong) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý : Vol.39 No.7 (202307)
ÀÌÅä µµ¿ä(Toyo Ito)ÀÇ °ø°ø°ÇÃ๰¿¡ ³ªÅ¸³ª´Â °ÇÃàÀû Ư¡¿¡ °üÇÑ ¿¬±¸
¹Ú¿¹Áö(Park, Ye-Gee) ; ÀÌ¿ø¼®(Lee, Wonshok) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý : Vol.39 No.6 (202306)