³í¹®¸í |
À§»óÆóÇÕ¿ø¸®¸¦ ÀÌ¿ëÇÑ °î¼±º¸ÀÇ Áøµ¿¼ö ¹æÁ¤½Ä / Frequency Equation of a Curved Beam using the Phase-closure Principle |
ÀúÀÚ¸í |
¹Ì·½º£ ¼¼¶ó ³¼öÄí»ç ; ¹ÚÇö¿ì |
¼ö·Ï»çÇ× |
Çѱ¹¼ÒÀ½Áøµ¿°øÇÐȸ ³í¹®Áý, Vol.32 No.03 (2022-06) |
ÆäÀÌÁö |
½ÃÀÛÆäÀÌÁö(280) ÃÑÆäÀÌÁö(15) |
ÁÖÁ¦¾î |
Áøµ¿¼ö ¹æÁ¤½Ä; °î¼±º¸; À§»óÆóÇÕ¿ø¸®; ºÐ»ê°î¼±; ¼öÄ¡ÇØ¼®; ´ºÅÏ-·¦½¼¹ý ; Frequency Equation; Curved Beam; Phase-Closure Principle; Dispersion Curve; Numerical Analysis; Newton-Raphson Method |
¿ä¾à1 |
ÀÌ ³í¹®Àº °î¼±º¸ÀÇ ¸ðµå Áøµ¿¼ö¸¦ ¿¹ÃøÇϱâ À§ÇØ ´Ü¼øÈµÈ Áøµ¿¼ö ¹æÁ¤½ÄÀ» Á¦½ÃÇÑ´Ù. ƯÈ÷, ÇѽÖÀÇ Àü´Þ ÆÄµ¿°ú µÎ½ÖÀÇ ¼Ò¸ê ÆÄµ¿ÀÌ Á¸ÀçÇÏ´Â °î¼±º¸ÀÇ Áøµ¿¼ö ¹üÀ§¿¡¼ ´Ü¼øÈµÈ Áøµ¿¼ö ¹æÁ¤½ÄÀ» À¯µµÇÑ´Ù. º¸ÀÇ ¾çÂÊ ÁöÁ¡À¸·Î ÀÔ»çµÇ´Â ¼Ò¸ê ÆÄµ¿Àº ¹«½ÃÇÒ ¼ö ÀÖ´Ù°í °¡Á¤ÇÑ´Ù. À§»óÆóÇÕ¿ø¸®¸¦ ´Ù¾çÇÑ ÁöÁ¡ Á¶°ÇÀ» °¡Áö´Â °î¼±º¸¿¡ Àû¿ëÇÑ´Ù. °î¼±º¸¿¡¼ ÆÄ ¹Ý»ç °è¼ö¸¦ ¸ÕÀú °è»êÇÑ ÈÄ ÆÄ ¹Ý»ç¿¡ ÀÇÇÑ À§»óº¯È¸¦ À§»óÆóÇÕ¿ø¸®¿¡ Àû¿ëÇÏ¿© Áøµ¿¼ö ¹æÁ¤½ÄÀ» À¯µµÇÑ´Ù. Áøµ¿¼ö ¹æÁ¤½ÄÀ¸·ÎºÎÅÍ ¸ðµå Áøµ¿¼ö¸¦ °è»êÇϱâ À§ÇØ ´ºÅÏ-·¦½¼¹ýÀ» Àû¿ëÇÑ´Ù. Á¦¾ÈµÈ Á֯ļö ¹æÁ¤½ÄÀº ´Ù¾çÇÑ ÁöÁö Á¶°Ç ¹× ½ºÆÒ °¢µµ¿¡ ´ëÇÑ ¼öÄ¡ ÇØ¼® °á°ú·Î °ËÁõÇÑ´Ù. |
¿ä¾à2 |
This paper presents a simplified frequency equation that predicts the modal frequencies of a curved beam. In particular, the simplified frequency equation is derived for a frequency range within which one pair of propagating wave motions and two pairs of evanescent wave motions exist on the curved beam. All incident evanescent wave motions are assumed to be negligible at both ends of the beam. The phase-closure principle is applied to a curved beam with varying support conditions. First, the wave reflection coefficients for the curved beam are calculated, after which the phases of the reflection coefficients are applied using the phase-closure principle to derive the frequency equation. Then, the Newton-Raphson method is employed to compute the modal frequencies from the frequency equation. The proposed frequency equation is validated with numerical results for varying support conditions and span angles. |