°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

Çѱ¹¼ÒÀ½Áøµ¿°øÇÐȸ|Çѱ¹¼ÒÀ½Áøµ¿°øÇÐȸ³í¹®Áý 2022³â 6¿ù

³í¹®¸í À§»óÆóÇÕ¿ø¸®¸¦ ÀÌ¿ëÇÑ °î¼±º¸ÀÇ Áøµ¿¼ö ¹æÁ¤½Ä / Frequency Equation of a Curved Beam using the Phase-closure Principle
ÀúÀÚ¸í ¹Ì·½º£ ¼¼¶ó ³­¼öÄí»ç ; ¹ÚÇö¿ì
¹ßÇà»ç Çѱ¹¼ÒÀ½Áøµ¿°øÇÐȸ
¼ö·Ï»çÇ× Çѱ¹¼ÒÀ½Áøµ¿°øÇÐȸ ³í¹®Áý, Vol.32 No.03 (2022-06)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(280) ÃÑÆäÀÌÁö(15)
ISSN 1598-2785
ÁÖÁ¦ºÐ·ù ȯ°æ¹×¼³ºñ
ÁÖÁ¦¾î Áøµ¿¼ö ¹æÁ¤½Ä; °î¼±º¸; À§»óÆóÇÕ¿ø¸®; ºÐ»ê°î¼±; ¼öÄ¡ÇØ¼®; ´ºÅÏ-·¦½¼¹ý ; Frequency Equation; Curved Beam; Phase-Closure Principle; Dispersion Curve; Numerical Analysis; Newton-Raphson Method
¿ä¾à1 ÀÌ ³í¹®Àº °î¼±º¸ÀÇ ¸ðµå Áøµ¿¼ö¸¦ ¿¹ÃøÇϱâ À§ÇØ ´Ü¼øÈ­µÈ Áøµ¿¼ö ¹æÁ¤½ÄÀ» Á¦½ÃÇÑ´Ù. ƯÈ÷, ÇѽÖÀÇ Àü´Þ ÆÄµ¿°ú µÎ½ÖÀÇ ¼Ò¸ê ÆÄµ¿ÀÌ Á¸ÀçÇÏ´Â °î¼±º¸ÀÇ Áøµ¿¼ö ¹üÀ§¿¡¼­ ´Ü¼øÈ­µÈ Áøµ¿¼ö ¹æÁ¤½ÄÀ» À¯µµÇÑ´Ù. º¸ÀÇ ¾çÂÊ ÁöÁ¡À¸·Î ÀÔ»çµÇ´Â ¼Ò¸ê ÆÄµ¿Àº ¹«½ÃÇÒ ¼ö ÀÖ´Ù°í °¡Á¤ÇÑ´Ù. À§»óÆóÇÕ¿ø¸®¸¦ ´Ù¾çÇÑ ÁöÁ¡ Á¶°ÇÀ» °¡Áö´Â °î¼±º¸¿¡ Àû¿ëÇÑ´Ù. °î¼±º¸¿¡¼­ ÆÄ ¹Ý»ç °è¼ö¸¦ ¸ÕÀú °è»êÇÑ ÈÄ ÆÄ ¹Ý»ç¿¡ ÀÇÇÑ À§»óº¯È­¸¦ À§»óÆóÇÕ¿ø¸®¿¡ Àû¿ëÇÏ¿© Áøµ¿¼ö ¹æÁ¤½ÄÀ» À¯µµÇÑ´Ù. Áøµ¿¼ö ¹æÁ¤½ÄÀ¸·ÎºÎÅÍ ¸ðµå Áøµ¿¼ö¸¦ °è»êÇϱâ À§ÇØ ´ºÅÏ-·¦½¼¹ýÀ» Àû¿ëÇÑ´Ù. Á¦¾ÈµÈ Á֯ļö ¹æÁ¤½ÄÀº ´Ù¾çÇÑ ÁöÁö Á¶°Ç ¹× ½ºÆÒ °¢µµ¿¡ ´ëÇÑ ¼öÄ¡ ÇØ¼® °á°ú·Î °ËÁõÇÑ´Ù.
¿ä¾à2 This paper presents a simplified frequency equation that predicts the modal frequencies of a curved beam. In particular, the simplified frequency equation is derived for a frequency range within which one pair of propagating wave motions and two pairs of evanescent wave motions exist on the curved beam. All incident evanescent wave motions are assumed to be negligible at both ends of the beam. The phase-closure principle is applied to a curved beam with varying support conditions. First, the wave reflection coefficients for the curved beam are calculated, after which the phases of the reflection coefficients are applied using the phase-closure principle to derive the frequency equation. Then, the Newton-Raphson method is employed to compute the modal frequencies from the frequency equation. The proposed frequency equation is validated with numerical results for varying support conditions and span angles.
¼ÒÀåó Çѱ¹¼ÒÀ½Áøµ¿°øÇÐȸ
¾ð¾î ¿µ¾î
DOI https://doi.org/10.5050/KSNVE.2022.32.3.280