°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

Çѱ¹°Ç¼³°ü¸®ÇÐȸ|³í¹®Áý 2020³â 11¿ù

³í¹®¸í °øµ¿ÁÖÅà ¸®¸ðµ¨¸µ ÀÚµ¿°ßÀûÀ» À§ÇÑ DL-MCS Hybrid Expert System °³¹ß / Development of DL-MCS Hybrid Expert System for Automatic Estimation of Apartment Remodeling
ÀúÀÚ¸í ±èÁØ ; Â÷Èñ¼º
¹ßÇà»ç Çѱ¹°Ç¼³°ü¸®ÇÐȸ
¼ö·Ï»çÇ× Çѱ¹°Ç¼³°ü¸®ÇÐȸ ³í¹®Áý, Vol.21 No.6 (2020-11)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(113) ÃÑÆäÀÌÁö(12)
ISSN 2005-6095
ÁÖÁ¦ºÐ·ù ½Ã°ø(Àû»ê)
ÁÖÁ¦¾î °ßÀû ÀÚµ¿È­; °³»ê °ßÀû; ³ëÈÄ °øµ¿ÁÖÅÃ; ¸®¸ðµ¨¸µ; µö·¯´×±â¹Ý °ßÀû ; Automatic Estimation; Schematic Estimation; Aged Apartment Remodeling; Deep Learning
¿ä¾à1 ³ëÈÄÈ­µÈ °øµ¿ÁÖÅÃÀ» ¸®¸ðµ¨¸µÀ» ÅëÇÏ¿© ¼º´É°³¼±À» ÇÏ°íÀÚ ÇÏ´Â »çȸÀû ¿òÁ÷ÀÓÀÌ Æ÷ÂøµÇ°í ÀÖ´Ù. À̸¦ À§ÇØ ¸®¸ðµ¨¸µÀÇ °ø»çºñ ºÐ¼®, ±¸Á¶ ºÐ¼®, Á¤Ä¡Á¦µµÀû °ËÅäµîÀÌ ÁøÇàµÇ¾î ¸®¸ðµ¨¸µÀ» È°¼ºÈ­¹æ¾ÈÀÌ Á¦½ÃµÇ°í ÀÖ´Ù. ±×·¯³ª ÇöÀç °øµ¿ÁÖÅà ¸®¸ðµ¨¸µÀÇ °ø»çºñ ºÐ¼®¹æ¹ýÀÌ ¿¬±¸»óÀ¸·Î Á¦½ÃµÇ°í ÀÖÀ¸³ª, ½Ç¹«Àû È°¿ë°¡´É¼º¿¡¼­ ÇÑ°èÁ¡ÀÌ Á¸ÀçÇÏ´Â »óȲÀÌ´Ù. ±¸Ã¼ÀûÀ¸·Î, ½Ç¹«ÀûÀ¸·Î È°¿ëµÇ±â À§Çؼ­´Â ÇöÀç ÁøÇàµÇ¾ú°Å³ª ÁøÇà ÁßÀÎ »ç·Ê¿¡´Â Àû¿ë°¡´ÉÇÏÁö¸¸ ÇâÈÄ ¹ß»ýÇÒ »ç·Ê ¶ÇÇÑ °ø»çºñºÐ¼®¿¡ È°¿ëµÇ±â¿¡ ºÐ¼®¹æ¹ýÀÇ Áö¼Ó°¡´É¼ºÀÌ °á¿©µÇ¾î ÀÖ´Ù. µû¶ó¼­ º» ¿¬±¸¿¡¼­´Â °øµ¿ÁÖÅà ¸®¸ðµ¨¸µ °ø»çºñ°ßÀûÀÇ Áö¼Ó°¡´É¼ºÀ» À§ÇØ ÀÚµ¿È­µÈ °ßÀû¹æ¹ýÀ» Á¦½ÃÇÏ°íÀÚ ÇÑ´Ù. °ø»çºñ°ßÀûÀÇ Áö¼Ó°¡´É¼ºÀ» À§Çؼ­ Deep-LearningÀ» °ßÀûÀýÂ÷¿¡ µµÀÔÇÏ¿´´Ù. ±¸Ã¼ÀûÀ¸·Î, °øµ¿ÁÖÅà ¸®¸ðµ¨¸µ¿¡¼­ ¹ß»ýÇÒ ¼ö ÀÖ´Â ¼³°è¿ä¼Ò,°øÁ¾, °ø»çºñ »ó½Â°è¼öÀÇ °ü°è¸¦ ÀÚµ¿ÀûÀ¸·Î ã´Â ¹æ¾ÈÀ» Á¦½ÃÇÏ¿´´Ù. Ãß°¡ÀûÀ¸·Î Artificial Neural Network±â¹Ý °ßÀûÀÇ Å»ýÀûÀÎ ÇÑ°èÁ¡ÀÎ ºÒÈ®½Ç¼º ¹Ì¹Ý¿µÀ» º¸¿ÏÇÏ°íÀÚ Monte Carlo SimulationÀ» °ßÀûÀýÂ÷¿¡ »êÀÔÇÏ¿´´Ù. »ç·Ê°¡ ´©ÀûµÉ¼ö·Ï ´õ ³ôÀº Á¤È®µµ¸¦ Á¦½ÃÇϱâ À§ÇÏ¿© °ßÀû°á°ú¸¦ ±âÁ¸ÀÇ ´©Àûµ¥ÀÌÅÍ¿Í ºñ±³¸¦ ÇÏ¿© ´õ ³ôÀº Á¤È®µµ¸¦ »êÃâÇÏ´Â ¹æ¾È ¶ÇÇÑ Á¦½ÃµÇ¾ú´Ù. º» ¿¬±¸¿¡¼­ Á¦¾ÈÇÑ ÀÚµ¿È­µÈ °³»ê°ßÀûÀÇ Áö¼Ó°¡´É¼ºÀ» °ËÅäÇÏ°íÀÚ 13°³ »ç·ÊÀÇ ÇнÀÀýÂ÷¿Í Ãß°¡ 2°³ »ç·ÊÀÇ ´©ÀûÀýÂ÷¸¦ °ÅÃÆ´Ù. °á°úÀûÀ¸·Î Ãß°¡µÈ 2°³ ÇÁ·ÎÁ§Æ®ÀÇ Æ¯¼ºÀÌ ¹Ý¿µµÈ »õ·Î¿î °ø»çºñ°ßÀûÀýÂ÷°¡ ÀÚµ¿ÀûÀ¸·Î Á¦½ÃµÇ¾ú´Ù. º» ¿¬±¸¿¡¼­´Â 15°³ÀÇ »ç·Ê¸¦ È°¿ëÇÏ¿© °³»ê°ßÀûÀÇ ¹æ¾ÈÀ» È°¿ëÇÏ¿´À¸³ª, »ç·Ê°¡ ´©ÀûµÇ¾î ¹Ý¿µµÉ °æ¿ì º» ¿¬±¸ÀÇ ±â´ëÈ¿°ú´Â ´õ¿í ³ô¾ÆÁú °ÍÀ¸·Î »ç·áµÈ´Ù.
¿ä¾à2 Social movements to improve the performance of buildings through remodeling of aging apartment houses are being captured. To this end, the remodeling construction cost analysis, structural analysis, and political institutional review have been conducted to suggest ways to activate the remodeling. However, although the method of analyzing construction cost for remodeling apartment houses is currently being proposed for research purposes, there are limitations in practical application possibilities. Specifically, In order to be used practically, it is applicable to cases that have already been completed or in progress, but cases that will occur in the future are also used for construction cost analysis, so the sustainability of the analysis method is lacking. For the purpose of this, we would like to suggest an automated estimating method. For the sustainability of construction cost estimates, Deep-Learning was introduced in the estimating procedure. Specifically, a method for automatically finding the relationship between design elements, work types, and cost increase factors that can occur in apartment remodeling was presented. In addition, Monte Carlo Simulation was included in the estimation procedure to compensate for the lack of uncertainty, which is the inherent limitation of the Deep Learning-based estimation. In order to present higher accuracy as cases are accumulated, a method of calculating higher accuracy by comparing the estimate result with the existing accumulated data was also suggested. In order to validate the sustainability of the automated estimates proposed in this study, 13 cases of learning procedures and an additional 2 cases of cumulative procedures were performed. As a result, a new construction cost estimating procedure was automatically presented that reflects the characteristics of the two additional projects. In this study, the method of estimate estimate was used using 15 cases, If the cases are accumulated and reflected, the effect of this study is expected to increase.
¼ÒÀåó Çѱ¹°Ç¼³°ü¸®ÇÐȸ
¾ð¾î Çѱ¹¾î
DOI http://dx.doi.org/10.6106/KJCEM.2020.21.6.113
ºÐ¼®¼­Áö
°Ç¼³°ü¸® > Àç°ÇÃà ¹× ¸®¸ðµ¨¸µ > ¸®¸ðµ¨¸µ

°Ç¼³°ü¸® > ÇÁ·ÎÁ§Æ®°ü¸® > ¿ø°¡°ü¸®

¡á Ãßõ¹®Çå (ÀÌ ¹®Çå°ú °°ÀÌ º» ¹®Çå)
¼³°è¿ä¼Òº° ¿µÇâºÐ¼®À» ÅëÇÑ °øµ¿ÁÖÅà ¸®¸ðµ¨¸µ °ø»çºñ°³»ê°ßÀû »êÃ⠽ýºÅÛ °³¹ß
±èÁØ(Kim, Jun) ; Â÷Èñ¼º(Cha, Heesung) - Çѱ¹°Ç¼³°ü¸®ÇÐȸ ³í¹®Áý : Vol.19 No.6 (201811)
°øµ¿ÁÖÅà ¸®¸ðµ¨¸µ Ãʱ⠴ܰè ÀÇ»ç°áÁ¤À» À§ÇÑ È®·ü·ÐÀû ¸®½ºÅ© ±â¹Ý ºñ¿ë ¿¹Ãø ¸ðµ¨ °³¹ß
À̵¿°Ç(Lee, Dong-gun) ; Â÷Èñ¼º(Cha, Heesung) - Çѱ¹°Ç¼³°ü¸®ÇÐȸ ³í¹®Áý : Vol.17 No.2 (201603)
°øµ¿ÁÖÅà ÁöÇÏÁÖÂ÷Àå È®´ë ¸®¸ðµ¨¸µ °³·« °ø»çºñ »êÁ¤ ¸ðµ¨ °³¹ß
Á¤Àººó(Jeong, Eunbeen) ; ±¸Ãæ¿Ï(Koo, Choongwan) ; ±èÅ¿Ï(Kim, Taewan) ; ÀÌÂù½Ä(Lee, Chansik) - Çѱ¹°Ç¼³°ü¸®ÇÐȸ ³í¹®Áý : Vol.22 No.2 (202103)
[½Ã·Ð] 4Â÷ »ê¾÷Çõ¸í ½Ã´ë, °ÇÃàÀÇ ´ëÀÀ
À̸í½Ä(Lee, Myung-Sik) - °ÇÃà(´ëÇÑ°ÇÃàÇÐȸÁö) : Vol.61 No.05 (201705)
°øµ¿ÁÖÅà ¸®¸ðµ¨¸µ°ø»ç Ç¥ÁØ°ø±â ¼³Á¤¿¡ °üÇÑ ¿¬±¸
À±Á¾½Ä(Yoon, Jongsik) ; À¯ÀÏÇÑ(Yu, Ilhan) - Çѱ¹°Ç¼³°ü¸®ÇÐȸ ³í¹®Áý : Vol.18 No.2 (201703)
³ëÈÄ°øµ¿ÁÖÅà ¸®¸ðµ¨¸µÀÇ °³·«°ßÀûÀ» À§ÇÑ BIM µ¥ÀÌÅͺ£À̽º ±¸Ãà
À̵¿°Ç(Lee, Dong-Gun) ; Â÷Èñ¼º(Cha, Hee-Sung) - Çѱ¹°Ç¼³°ü¸®ÇÐȸ ³í¹®Áý : Vol.11 No.5 (201009)
[ÇöÀ厹æ] û´ã û±¸ ¾ÆÆÄÆ® ¸®¸ðµ¨¸µ °ø»ç
ÀÌÁ¾½Ä ; ºùâ¹Î - Çѱ¹°ÇÃà½Ã°øÇÐȸÁö : v.12 n.6(Åë±Ç Á¦56È£) (201212)
Claim Grouping SystemÀ» Àû¿ëÇÑ °Ç¼³ºÐÀï»ç·Ê °Ë»ö¾Ë°í¸®Áò °³¹ß
±èÁØ(Kim Jun) ; ±èµ¿Èñ(Kim Dong-hee) ; Â÷Èñ¼º(Cha Hee-Sung) - Çѱ¹°Ç¼³°ü¸®ÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : (201611)
¸®¸ðµ¨¸µÀÇ Æ¯¼ºÀ» ¹Ý¿µÇÑ Ã¶°Å°ø»çÀÇ °øÁ¤°èȹ ¼ö¸³¹æ¾È
°­»çÀÏ(Kang, Sa-Yil) ; Ȳ¿µ±Ô(Hwang, Young-Kyu) ; ±è°æ·¡(Kim, Kyung-Rai) - Çѱ¹°Ç¼³°ü¸®ÇÐȸ ³í¹®Áý : Vol.9 No.5 (200810)
ö±ÙÄÜÅ©¸®Æ® °ø»çÀÇ ÀÛ¾÷ »ý»ê¼º ºÐ¼®À» À§ÇÑ 3Â÷¿ø °´Ã¼ È°¿ë Á¤º¸°ü¸® ½Ã½ºÅÛ ±¸Ãà¹æ¾È
±èÁØ(Kim, Jun) ; Â÷Èñ¼º(Cha, Heesung) - Çѱ¹°Ç¼³°ü¸®ÇÐȸ ³í¹®Áý : Vol.19 No.2 (201803)