°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇÑ°ÇÃàÇÐȸ|³í¹®Áý 2020³â 11¿ù

³í¹®¸í °èÀýº° ½Ç³» ȯ°æ µ¥ÀÌÅÍ ±â¹Ý Àç½ÇÀÚ Çൿ ºÐ·ù ¸ðµ¨ °³¹ß / A Model for Classification of Occupant Behavior based on Building Environmental Data by Seasons
ÀúÀÚ¸í ÀÌ¿¹¸°(Ye Rin Lee) ; À±¿µ¶õ(Young Ran Yoon) ; ¹®ÇöÁØ(Hyeun Jun Moon)
¹ßÇà»ç ´ëÇÑ°ÇÃàÇÐȸ
¼ö·Ï»çÇ× ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý, Vol.36 No.11 (2020-11)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(239) ÃÑÆäÀÌÁö(7)
ISSN 2733-6247
ÁÖÁ¦ºÐ·ù ȯ°æ¹×¼³ºñ / °èȹ¹×¼³°è
ÁÖÁ¦¾î Àç½ÇÀÚ ÇàÅÂ; Àç½ÇÀÚ Çൿ; °Ç¹° ȯ°æ µ¥ÀÌÅÍ; ºÐ·ù¾Ë°í¸®Áò; ±â°èÇнÀ ; Occupant status; Occupant activity; Environmental data; Classification; Machine Learning
¿ä¾à1 HVAC ½Ã½ºÅÛÀÇ ÀûÀýÇÑ °Ç¹° ¿î¿µ ¹× Á¦¾î¸¦ À§ÇØ °ÅÁÖÀÚÀÇ ¼ö¿Í ±× È°µ¿¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸¸¦ °®´Â °ÍÀÌ Áß¿äÇÏ´Ù. ½Ç³» ȯ°æÀº ±â±â »ç¿ë°ú °ÅÁÖÀÚÀÇ È°µ¿¿¡ ¿µÇâÀ» ¹Þ´Â´Ù. µû¶ó¼­ º» ¿¬±¸´Â ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀ» ÀÌ¿ëÇÑ °ÅÁÖÀÚÀÇ È°µ¿ ºÐ·ù¸¦ ¸ñÀûÀ¸·Î ÇÑ´Ù. ºÐ·ù ¾Ë°í¸®ÁòÀ» ÀÌ¿ëÇÏ¿© °èÀýº°(¿©¸§, °Ü¿ï, ¿©¸§+°Ü¿ï)º° Àç½ÇÀÚ Çൿ ÀÎÁö ¸ðµ¨À» °³¹ßÇÏ¿´´Ù. µ¥ÀÌÅÍ ¼öÁýÀº ½º¸¶Æ® ¸®ºù Å×½ºÆ®º£µå¿¡¼­ ¼öÇàµÇ¾úÀ¸¸ç, Àç½ÇÀÚÀÇ »óŸ¦ ¼ö¸é, ÈÞ½Ä, ÀÛ¾÷, ¿ä¸®, ½Ä»ç, ¿îµ¿, ¿ÜÃâÀÇ 7°¡Áö È°µ¿À¸·Î ºÐ·ùÇÏ¿´´Ù. Àç½ÇÀÚÀÇ Çൿ ºÐ·ù ¸ðµ¨ °³¹ßÀ» À§ÇØ µÎ °¡Áö ºÐ·ù ¾Ë°í¸®Áò(KNN, Random Forest)À» »ç¿ëÇÏ¿´´Ù. ¿©¸§Ã¶ µ¥ÀÌÅ͸¦ ÀÌ¿ëÇÑ ·£´ý Æ÷·¹½ºÆ® ¸ðµ¨ÀÇ °æ¿ì, ¸ðµ¨ÀÇ Á¤È®µµ´Â 95.96%À̸ç KNNÀÇ °æ¿ì, Á¤È®µµ°¡ 94.75%·Î ³ªÅ¸³µ´Ù. °Ü¿ïö µ¥ÀÌÅ͸¦ ÀÌ¿ëÇÑ ¸ðµ¨ÀÇ °æ¿ì ·£´ý Æ÷·¹½ºÆ® ¸ðµ¨ÀÇ Á¤È®µµ´Â 98.91%, KNNÀº 98.90%·Î ³ªÅ¸³µ´Ù. ¿©¸§Ã¶°ú °Ü¿ïö µ¥ÀÌÅ͸¦ ÇÔ²² »ç¿ëÇßÀ» ¶§, µÎ ¸ðµ¨ÀÇ Á¤È®µµ´Â °¢°¢ ·£´ý Æ÷·¹½ºÆ® 97.82%, KNN 97.16%·Î ³ªÅ¸³µ´Ù. ±×·¯³ª ¿ä¸®¿Í ÈÞ½ÄÀº ´Ù¸¥ È°µ¿¿¡ ºñÇØ Á¤È®µµ°¡ ³·¾Ò´Ù.
¿ä¾à2 It is important to have detailed information on the number of occupants and their activities for appropriate building operation and control of
HVAC systems. Indoor environment is affected by using thermal environmental devices, and the occupant¡¯s activities as well. Thus, this
study focuses on the classification of occupant¡¯s activities using machine learning algorithms with indoor environmental data. We developed
an occupant¡¯s status detection model by seasons(summer, winter, summer and winter) using classification algorithms. Data collection was
performed in a Smart Living Testbed. This study categorized occupant¡¯s status into 7 activities; sleeping, resting, working, cooking, eating,
exercising, or away. Two classification algorithms(KNN, Random Forest) were evaluated for the development of an occupant¡¯s behavior
classification model. For Random Forest model using summer data, the accuracy of the occupant behavior detection model was 95.96% and
for KNN, the accuracy was 94.75%. For models using winter data, the accuracy of Random Forest model was 98.91% and KNN was
98.90%. When we used summer and winter data together for the classification models, the accuracies of both models were 97.82% for
Random Forest and 97.16% for KNN, respectively. However, cooking and rest showed lower accuracies compared to other activities.
¼ÒÀåó ´ëÇÑ°ÇÃàÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.5659/JAIK.2020.36.11.239
ºÐ¼®¼­Áö
°ÇÃàȯ°æ ¹× ¼³ºñ > ±âŸ

¡á Ãßõ¹®Çå (ÀÌ ¹®Çå°ú °°ÀÌ º» ¹®Çå)
2025³â Àǹ«È­ ·Îµå¸Ê¿¡ µû¸¥ °ø°ø½Ã¼³ Á¦·Î¿¡³ÊÁö°ÇÃ๰ ÀÎÁõÁ¦µµ ½ÃÀå ¼ö¿ë¼º
À̽¹Î(Lee, Seung-Min) ; ±èÁøÈ£(Kim, Jin-Ho) ; ½Å±¤¼ö(Shin, Gwang-Su) ; ±èÀÇÁ¾(Kim, Eui-Jong) - Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ ³í¹®Áý : Vol.12 No.6 (201812)
Àç½ÇÀÚ ¹ÝÀÀÀÌ °í·ÁµÈ ¿¡ÀÌÀüÆ® ºôµù ¿¡³ÊÁö ½Ã¹Ä·¹À̼Ç
±èÁ¾Çå(Kim, Jong-Hun) ; ¹Ú»ó¸°(Park, Sang-Lin) ; ±è´ö¿ì(Kim, Deuk-Woo) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý °èȹ°è : v.27 n.12 (201112)
°¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ã°¢Å¾ ÃÖÀûÁ¦¾î
±èÀç¹Î(Kim, Jae-Min) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ÃßÇÑ°æ(Chu, Han-Gyeong) ; À̵¿Çõ(Yi, Dong-Hyuk) ; ¹Ú¼ºÈ£(Park, SungHo) ; ¿©¸í¼®(Yeo, Myoung-Souk) ; ¹Úö¼ö(Park, Cheol-Soo) - Ãß°èÇмú¹ßÇ¥´ëȸ : 2018 (201811)
IoTÁ¤º¸±â¹Ý Modelica-EnergyPlus Co-simulationÀ» ÅëÇÑ ¿¡³ÊÁö¼Òºñ·® ÃßÁ¤
±èÇýÁø(Kim, Hye-Jin) ; ¼­µ¿Çö(Seo, Dong-Hyun) - Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ ³í¹®Áý : Vol.13 No.5 (201910)
Àΰø½Å°æ¸Á ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ãµ¿±â ¹× °øÁ¶±â ÃÖÀû ±âµ¿/Á¤Áö Á¦¾î
¹Ú¼ºÈ£(Park, SungHo) ; ¾È±â¾ð(Ahn, Ki Uhn) ; Ȳ½ÂÈ£(Hwang, Aaron) ; ÃÖ¼±±Ô(Choi, Sunkyu) ; ¹Úö¼ö(Park, Cheol Soo) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.35 No.02 (201902)
½Ã°£ ´ÜÀ§ÀÇ M&V º£À̽º¶óÀÎ ±¸ÃàÀ» À§ÇÑ ¸Ó½Å·¯´× ¾Ë°í¸®Áò ±â¹Ý °Ç¹°¿¡³ÊÁö ¿¹Ãø ¸ðµ¨ÀÇ ¼º´É ºñ±³
À±¿µ¶õ(Young Ran Yoon) ; À̸íÈÆ(Myeung Hun Lee) ; ¹®ÇöÁØ(Hyeun Jun Moon) - Çѱ¹»ýȰȯ°æÇÐȸÁö : Vol.25 No.5 (201810)
[ƯÁý¿ø°í] ÀΰøÁö´É ±â¹Ý MPC¸¦ ÅëÇÑ °³º° °øÁ¶½Ã½ºÅÛÀÇ ÃÖÀû¿îÀü
¼­º´¸ð ; À̱¤È£ - ¼³ºñ | °øÁ¶ ³Ãµ¿ À§»ý(Çѱ¹¼³ºñ±â¼úÇùȸÁö) : Vol.34 No.01 (201701)
Àü¿ª ¹Î°¨µµ ºÐ¼®À» ÀÌ¿ëÇÑ °Ç¹° ¿¡³ÊÁö ¼º´ÉÆò°¡ÀÇ ÇÕ¸®Àû °³¼±
À¯¿µ¼­(Yoo, Young-Seo) ; À̵¿Çõ(Yi, Dong-Hyuk) ; ±è¼±¼÷(Kim, Sun-Sook) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.36 No.05 (202005)
±âÁ¸ µ¥ÀÌÅͼ¾ÅÍÀÇ ±¸¿ª´ÜÀ§ ¿¡³ÊÁö È¿À²Æò°¡ ¹æ¹ý ¹× PUE ±â¹Ý M&V º£À̽º¶óÀÎ ¸ðµ¨ °³¹ß
Á¶Áø±Õ(Jinkyun Cho) ; È«¿øÇ¥(Won-Pyo Hong) - ¼³ºñ°øÇÐ³í¹®Áý : Vol.32 No.2 (202002)
ECO2 ¿î¿µÇÁ·ÎÆÄÀÏ º¸Á¤À» ÅëÇÑ ¿¡³ÊÁö »ç¿ë·® ºñ±³¿¡ °üÇÑ ¿¬±¸
Àüº´±â(Jeon, Byung-Ki) ; ¹Ú⿵(Park, Chang-Young) ; ÀåÇâÀÎ(Jang, Hyang-In) ; ÃÖ¼º¿ì(Choi, Sung-Woo) ; °­¹Î±¸(Kang, Min-Gu) ; ±èÀÇÁ¾(Kim, Eui-Jong) - Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ ³í¹®Áý : Vol.12 No.3 (201806)