°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇѰÇÃàÇÐȸ|´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è 2020³â 4¿ù

³í¹®¸í °¡»óÇö½Ç ±â¹Ý 3Â÷¿ø °ø°£¿¡ ´ëÇÑ °¨Á¤ºÐ·ù µö·¯´× ¸ðµ¨ / Emotion Classification DNN Model for Virtual Reality based 3D Space
ÀúÀÚ¸í ¸íÁö¿¬(Myung, Jee-Yeon) ; ÀüÇÑÁ¾(Jun, Han-Jong)
¹ßÇà»ç ´ëÇѰÇÃàÇÐȸ
¼ö·Ï»çÇ× ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è, Vol.36 No.04 (2020-04)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(41) ÃÑÆäÀÌÁö(9)
ISSN 1226-9093
ÁÖÁ¦ºÐ·ù °èȹ¹×¼³°è / Àü»ê
ÁÖÁ¦¾î °¡»óÇö½Ç; °¨Á¤; ³úÆÄ; FFT; µö·¯´× ; Virtual Reality(VR); Emotion; Electroencephalography(EEG); Fast Fourier Transform(FFT); Deep Learning
¿ä¾à1 º» ¿¬±¸ÀÇ ¸ñÀûÀº DNN (Deep Neural Networks) ¸ðµ¨À» »ç¿ëÇÏ¿© »ç¿ëÀÚÀÇ °¨Á¤, ƯÈ÷ VR (Virtual-Reality) ±â¹ÝÀÇ 3Â÷¿ø µðÀÚÀÎ ´ë¾È¿¡ ´ëÇÑ ³úÆÄ (EEG) ±â¹ÝÀÇ °¨Á¤À» ºÐ·ùÇÏ´Â °ÍÀÌ´Ù. »ç¿ëÀÚÀÇ °¨Á¤À» ÃøÁ¤Çϱâ À§ÇØ 4 °¡Áö À¯ÇüÀÇ VR °ø°£ÀÌ ±¸ÃàµÇ¾úÀ¸¸ç, °¢ Àڱؿ¡ ´ëÇÑ ³úÆÄ°¡ ÃøÁ¤µÇ¾ú´Ù. EEG µ¥ÀÌÅÍ¿¡ ±âÃÊÇÑ Á¤·®Àû Æò°¡¿¡ ´õÇÏ¿©, VR ÀÚ±Ø »çÀÌÀÇ Â÷À̰¡ ÀÖ´ÂÁö¸¦ Á¤¼ºÀûÀ¸·Î È®ÀÎÇϱâ À§ÇÑ ¼³¹®ÀÌ ¼öÇàµÇ¾ú´Ù. Á¤±ÔÈ­ ¼øÀ§ ºÐ¼® °á°ú °èȹ À¯Çü °£¿¡ À¯ÀÇ ÇÑ Â÷À̰¡ È®ÀεǾú´Ù. µû¶ó¼­ ÁÖ°üÀû ¼³¹®ÁöÀÇ °ªÀ» DNN ¸ðµ¨ÀÇ ¶óº§¸µ µ¥ÀÌÅÍ·Î, ¼öÁýµÈ EEG µ¥ÀÌÅ͸¦ ¸ðµ¨ÀÇ Æ¯Â¡ °ªÀ¸·Î »ç¿ëÇß´Ù.??¸ðµ¨ ±¸Ãà ¹× ÈÆ·Ã¿¡´Â Google Tensor Flow¸¦ »ç¿ëÇß´Ù. °á°úÀûÀ¸·Î °³¹ßµÈ ¸ðµ¨ÀÇ Á¤È®µµ´Â 98.9 %·Î ÀÌÀü ¿¬±¸º¸´Ù ³ô´Ù. µû¶ó¼­ º» ¿¬±¸¿¡¼­ Á¦¾ÈÇÑ ¸ðµ¨À» Ȱ¿ëÇÏ¿© VR ±â¹Ý 3Â÷¿ø ¼³°è ´ë¾È¿¡ ´ëÇÑ ¿¹ºñ»ç¿ëÀÚÀÇ °¨Á¤ÆÄ¾ÇÀÌ °¡´ÉÇØÁú °ÍÀ¸·Î ±â´ëµÈ´Ù.
¿ä¾à2 The purpose of this study was to investigate the use of the Deep Neural Networks(DNN) model to classify user¡¯s emotions, in particular
Electroencephalography(EEG) toward Virtual-Reality(VR) based 3D design alternatives. Four different types of VR Space were constructed to
measure a user¡¯s emotion and EEG was measured for each stimulus. In addition to the quantitative evaluation based on EEG data, a
questionnaire was conducted to qualitatively check whether there is a difference between VR stimuli. As a result, there is a significant
difference between plan types according to the normalized ranking method. Therefore, the value of the subjective questionnaire was used as
labeling data and collected EEG data was used for a feature value in the DNN model. Google TensorFlow was used to build and train the
model. The accuracy of the developed model was 98.9%, which is higher than in previous studies. This indicates that there is a possibility
of VR and Fast Fourier Transform(FFT) processing would affect the accuracy of the model, which means that it is possible to classify a
user¡¯s emotions toward VR based 3D design alternatives by measuring the EEG with this model.
¼ÒÀåó ´ëÇѰÇÃàÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.5659/JAIK_PD.2020.36.4.41
ºÐ¼®¼­Áö
°ÇÃà°èȹ ¹× ¼³°è > ¼³°è¹æ¹ý·Ð > Á¤º¸±â¼ú Ȱ¿ë

¡á Ãßõ¹®Çå (ÀÌ ¹®Çå°ú °°ÀÌ º» ¹®Çå)
[½Ã·Ð] 4Â÷ »ê¾÷Çõ¸í ½Ã´ë, °ÇÃàÀÇ ´ëÀÀ
À̸í½Ä(Lee, Myung-Sik) - °ÇÃà(´ëÇѰÇÃàÇÐȸÁö) : Vol.61 No.05 (201705)
°¡»óÇö½ÇÀ» Ȱ¿ëÇÑ °ø°£¿¡¼­ÀÇ ³úÆÄ ÃøÁ¤°ú ½ºÆ®·¹½º º¯È­·® ºÐ¼®
±è¼±¿í(Kim, Sun-Uk) ; °­¼¼¿¬(Kang, Se-Yeon) ; Áö½Â¿­(Ji, Seung-Yeul) ; ÀüÇÑÁ¾(Jun, Han-Jong) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è : Vol.35 No.08 (201908)
°¡»óÇö½Ç ±â¹Ý 3Â÷¿ø °ø°£¿¡ ´ëÇÑ °¨Á¤Àû ¹ÝÀÀ
¸íÁö¿¬(Myung, Jee-Yeon) ; ÀüÇÑÁ¾(Jun, Han-Jong) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è : Vol.35 No.12 (201912)
Ãʱ⼳°è ´Ü°è »ç¿ëÀÚÀÇ °¨Á¤ ÀνÄÀ» À§ÇÑ ³úÆÄ±â¹Ý µö·¯´× ºÐ·ù¸ðµ¨
Àå¼±¿ì(Chang, Sun-Woo) ; µ¿¿øÇõ(Dong, Won-Hyeok) ; ÀüÇÑÁ¾(Jun, Han-Jong) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è : Vol.34 No.12 (201812)
VR°ú EEG¸¦ ÀÌ¿ëÇÑ ÃµÀå ³ôÀÌ¿Í °ø°£ ü·ù ½Ã°£¿¡ °üÇÑ ¿¬±¸
¿°»óÈÆ(Youm, Sang Hoon) ; ÀÌÀüÀ±(Lee, Jun Yoon) ; ÃÖÀ¯¸²(Choi, Yoo Rim) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý : Vol.37 No.02 (202102)
°ÇÃࡤ°ø°£µðÀÚÀÎ ºÐ¾ß EEG ½ÇÇ迬±¸ÀÇ ÅëÇÕÀû °æÇ⠺м®
±è»óÈñ(Kim, Sang-Hee) ; Ã߽¿¬(Choo, Seung-Yeon) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý : Vol.36 No.10 (202010)
·½ ÄðÇϽº¿Í Ä«Áî¿ä ¼¼Áö¸¶ °ÇÃà¿¡¼­ ³ªÅ¸³ª´Â ÇÁ·Î±×·¥ÀÇ Á¶Á÷°ú °ø°£±¸¼º ¹æ¹ýÀÇ ºñ±³ºÐ¼®
±Ç°æ¹Î ; ±èÁ¾Áø - Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ ³í¹®Áý : v.16 n.6(Åë±Ç 65È£) (200712)
[ƯÁý] ±¹³» ģȯ°æ °ÇÃ๰ »ç·Ê ºÐ¼®
Á¤Áö³ª ; ±è¿ë¼® ; À̽¹Π- ±×¸°ºôµù(Çѱ¹±×¸°ºôµùÇùÀÇȸÁö) : v.9 n.1 (200803)
¿ì¿ïÁõ»ó Ä¡À¯¸¦ À§ÇÑ ½Ç³» ÈÞ°Ô°ø°£ ȯ°æ»öä¸ðµ¨ ¿¬±¸
±è¼öÁ¤(Kim, Soo-Jeong) ; ¹Ú¼öºó(Park, Soobeen) - Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ ³í¹®Áý : Vol.30 No.3(Åë±Ç 146È£) (202106)
ÇÁ·Î±×·¥°ú ´ÙÀ̾î±×·¥ÀÇ Àû¿ëÀ» ÅëÇÑ °ÇÃà ÇüÅ »ý¼º ¿¬±¸
À±Çý°æ(Yoon Hae-Kyung) ; ±èÁÖ¿µ(Kim Ju-Young) ; È«¿øÈ­(Hong Won-Hwa) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è : v.26 n.02 (201002)