°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇѰÇÃàÇÐȸ|´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è 2019³â 2¿ù

³í¹®¸í Àΰø½Å°æ¸Á ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ãµ¿±â ¹× °øÁ¶±â ÃÖÀû ±âµ¿/Á¤Áö Á¦¾î / Artificial Neural Network Models for Optimal Start and Stop of Chiller and AHU
ÀúÀÚ¸í ¹Ú¼ºÈ£(Park, SungHo) ; ¾È±â¾ð(Ahn, Ki Uhn) ; Ȳ½ÂÈ£(Hwang, Aaron) ; ÃÖ¼±±Ô(Choi, Sunkyu)½Äº°ÀúÀÚ ; ¹Úö¼ö(Park, Cheol Soo)½Äº°ÀúÀÚ
¹ßÇà»ç ´ëÇѰÇÃàÇÐȸ
¼ö·Ï»çÇ× ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è, Vol.35 No.02 (2019-02)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(45) ÃÑÆäÀÌÁö(8)
ISSN 1226-9107
ÁÖÁ¦ºÐ·ù ±¸Á¶
ÁÖÁ¦¾î Àΰø½Å°æ¸Á ; ±â°èÇнÀ ; °Ç¹° ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛ ; ¸ðµ¨ ±â¹Ý Á¦¾î ; µ¥ÀÌÅÍ ±â¹Ý ¸ðµ¨ ; Artificial Neural Network ; Machine Learning ; BEMS ; Model Predictive Control ; Data-driven Model
¿ä¾à2 BEMS(Building Energy Management Systems) have been applied to office buildings and collect relevant building energy data, e.g. temperatures, mass flow rates and energy consumptions of building mechanical systems and indoor spaces. The aforementioned measured data can be beneficially utilized for developing data-driven machine learning models which can be then used as part of MPC(Model Predictive Control) and/or optimal control strategies. In this study, the authors developed ANN(Artificial Neural Network) models of an AHU (Air Handling Unit) and a chiller for a real-life office building using BEMS data. Based on the ANN models, the authors developed optimal control strategies, e.g. daily operation schedule with regard to optimal start and stop of the AHU and the chiller (500 RT). It was found that due to the optimal start and stop of the AHU and the chiller, 4.5% and 16.4% of operation hours of the AHU and the chiller could be saved, compared to an existing operation.
¼ÒÀåó ´ëÇѰÇÃàÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.5659/JAIK_SC.2019.35.2.45
ºÐ¼®¼­Áö
°ÇÃàȯ°æ ¹× ¼³ºñ > ¿¡³ÊÁö > °Ç¹°¿¡³ÊÁö

¡á Ãßõ¹®Çå (ÀÌ ¹®Çå°ú °°ÀÌ º» ¹®Çå)
[ƯÁý¿ø°í] ±â°èÇнÀ ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨À» ÀÌ¿ëÇÑ ¼³ºñ½Ã½ºÅÛ ÃÖÀûÁ¦¾î
¹Úö¼ö ; ¼­¿øÁØ ; ½ÅÇÑ¼Ö ; ÃßÇѰæ ; ¶ó¼±Áß - ¼³ºñ | °øÁ¶ ³Ãµ¿ À§»ý(Çѱ¹¼³ºñ±â¼úÇùȸÁö) : Vol.34 No.01 (201701)
±âÁ¸ °Ç¹° HVAC ½Ã½ºÅÛ¿¡ ´ëÇÑ ´Ù¼¸ °¡Áö ±â°èÇнÀ ¸ðµ¨ °³¹ß
¶ó¼±Áß(Ra, Seon-Jung) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ¼­¿øÁØ(Suh, Won-Jun) ; ÃßÇѰæ(Chu, Han-Gyeong) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.33 No.10 (201710)
°¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ã°¢Å¾ ÃÖÀûÁ¦¾î
±èÀç¹Î(Kim, Jae-Min) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ÃßÇѰæ(Chu, Han-Gyeong) ; À̵¿Çõ(Yi, Dong-Hyuk) ; ¹Ú¼ºÈ£(Park, SungHo) ; ¿©¸í¼®(Yeo, Myoung-Souk) ; ¹Úö¼ö(Park, Cheol-Soo) - Ãß°èÇмú¹ßÇ¥´ëȸ : 2018 (201811)
[ƯÁý¿ø°í] ÀΰøÁö´É ±â¹Ý MPC¸¦ ÅëÇÑ °³º° °øÁ¶½Ã½ºÅÛÀÇ ÃÖÀû¿îÀü
¼­º´¸ð ; À̱¤È£ - ¼³ºñ | °øÁ¶ ³Ãµ¿ À§»ý(Çѱ¹¼³ºñ±â¼úÇùȸÁö) : Vol.34 No.01 (201701)
±âÁ¸ °ÇÃ๰À» À§ÇÑ °Ç¹° ¿¡³ÊÁö ÇÁ·ÎÆÄÀϸµ ½Ã½ºÅÛ °³¹ß
¾È±â¾ð(Ahn, Ki Uhn) ; ±è¿µ¹Î(Kim, Young Min) ; ±è¿ë¼¼(Kim, Yong Se) ; À±¼ºÈ¯(Yoon, Seong Hwan) ; ½ÅÇѼÖ(Shin, Han Sol) ; ¹Úö¼ö(Park, Cheol Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.32 No.12 (201612)
»ç¹«¼Ò °Ç¹°¿¡¼­ ³Ãµ¿±âÀÇ ´ë¼öÁ¦¾î¸¦ ÅëÇÑ ³Ãµ¿±â °Åµ¿ Ư¼º ¹× ¿¡³ÊÁö Àý°¨ È¿°ú ºÐ¼®
¼­º´¸ð(Byeong-Mo Seo) ; ¼ÕÁ¤Àº(Jeong-Eun Son) ; À̱¤È£(Kwang Ho Lee) - ¼³ºñ°øÇÐ³í¹®Áý : Vol.28 No.04 (201604)
±â°èÇнÀ ¸ðµ¨ ¹× ÃÖÀûÈ­ ¾Ë°í¸®Áò °áÇÕÀ» ÀÌ¿ëÇÑ Èí¼ö½Ä ³Ãµ¿±â ÃÖÀû È¿À² ¿îÀü
¼­¿øÁØ(Suh, Won-Jun) ; ÃßÇѰæ(Chu, Han-Gyeong) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ¶ó¼±Áß(Ra, Seon-Jung) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.37 No.2 (201710)
°­È­ÇнÀÀ» ÀÌ¿ëÇÑ °Ç¹° ¿¡³ÊÁö ÃÖÀû Á¦¾î
¾È±â¾ð(Ahn, Ki Uhn) ; ¹Úö¼ö(Park, Cheol Soo) ; ¿©¸í¼®(Yeo, Myoung-Souk) - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.38 No.1 (201804)
[ƯÁý] EnergyPlus¿Í MATLAB ¿¬µ¿À» ÅëÇÑ ANN ±â¹Ý °øÁ¶¼³ºñ ÃÖÀûÁ¦¾î ¸ðµ¨¸µ ±â¹ý
¿¬»óÈÆ ; ¼­º´¸ð ; ÀÌÁ¦Çå ; ¹®Áø¿ì ; À̱¤È£ - ±×¸°ºôµù(Çѱ¹±×¸°ºôµùÇùÀÇȸÁö) : Vol.18 No.2 (201706)
°Ç¹° ¿¡³ÊÁö Áø´ÜÀ» À§ÇÑ ½Ã¹Ä·¹ÀÌ¼Ç Àû¿ë½Ã ÀïÁ¡°ú ÇѰè
¼­¿øÁØ(Suh, Won-Jun) ; ¹Úö¼ö(ParkCheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è : v.28 n.01 (201201)