°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇÑ°ÇÃàÇÐȸ|´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý °èȹ°è 2018³â 12¿ù

³í¹®¸í Ãʱ⼳°è ´Ü°è »ç¿ëÀÚÀÇ °¨Á¤ ÀνÄÀ» À§ÇÑ ³úÆıâ¹Ý µö·¯´× ºÐ·ù¸ðµ¨ / An EEG-based Deep Neural Network Classification Model for Recognizing Emotion of Users in Early Phase of Design
ÀúÀÚ¸í Àå¼±¿ì(Chang, Sun-Woo)½Äº°ÀúÀÚ ; µ¿¿øÇõ(Dong, Won-Hyeok) ; ÀüÇÑÁ¾(Jun, Han-Jong)
¹ßÇà»ç ´ëÇÑ°ÇÃàÇÐȸ
¼ö·Ï»çÇ× ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý °èȹ°è, Vol.34 No.12 (2018-12)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(85) ÃÑÆäÀÌÁö(10)
ISSN 1226-9093
ÁÖÁ¦ºÐ·ù ¿ª»ç
ÁÖÁ¦¾î °¨¼º ÀÎ½Ä ; ³úÆÄÀüÀ§¼ú ; µö·¯´× ¸ðµ¨ ; ÅÙ¼­Ç÷οì ; Affection Recognition ; Electroencephalography(EEG) ; Deep Neural Network Model ; TensorFlow
¿ä¾à2 The purpose of this paper was to propose a model that recognizes potential users' emotional response toward design by classifying Electroencephalography(EEG). Studies in neuroscience and psychology have made an effort to recognize subjects' emotional response by analyzing EEG data. And this approach has been adopted in design since it is critical to monitor users' subjective response in the preface of design. Moreover, the building design process cannot be reversed after construction, recognizing clients' affection toward design alternatives plays important role. An experiment was conducted to record subjects' EEG data while they view their most/least liked images of small-house designs selected by them among the eight given images. After the recording, a subjective questionnaire, PANAS, was distributed to the subjects in order to describe their own affection score in quantitative way. Google TensorFlow was used to build and train the model. Dataset for model training and testing consist of feature columns for recorded EEG data and labels for the questionnaire results. After training and testing, the measured accuracy of the model was 0.975 which was higher than the other machine learning based classification methods. The proposed model may suggest one quantitative way of evaluating design alternatives. In addition, this method may support designer while designing the facilities for people like disabled or children who are not able to express their own feelings toward alternatives.
¼ÒÀåó ´ëÇÑ°ÇÃàÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.5659/JAIK_PD.2018.34.12.85
ºÐ¼®¼­Áö
°ÇÃà°èȹ ¹× ¼³°è > ¼³°è¹æ¹ý·Ð > Á¤º¸±â¼ú È°¿ë

¡á Ãßõ¹®Çå (ÀÌ ¹®Çå°ú °°ÀÌ º» ¹®Çå)
[½Ã·Ð] 4Â÷ »ê¾÷Çõ¸í ½Ã´ë, °ÇÃàÀÇ ´ëÀÀ
À̸í½Ä(Lee, Myung-Sik) - °ÇÃà(´ëÇÑ°ÇÃàÇÐȸÁö) : Vol.61 No.05 (201705)
°¡»óÇö½Ç ±â¹Ý 3Â÷¿ø °ø°£¿¡ ´ëÇÑ °¨Á¤ºÐ·ù µö·¯´× ¸ðµ¨
¸íÁö¿¬(Myung, Jee-Yeon) ; ÀüÇÑÁ¾(Jun, Han-Jong) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý °èȹ°è : Vol.36 No.04 (202004)
2025³â Àǹ«È­ ·Îµå¸Ê¿¡ µû¸¥ °ø°ø½Ã¼³ Á¦·Î¿¡³ÊÁö°ÇÃ๰ ÀÎÁõÁ¦µµ ½ÃÀå ¼ö¿ë¼º
À̽¹Î(Lee, Seung-Min) ; ±èÁøÈ£(Kim, Jin-Ho) ; ½Å±¤¼ö(Shin, Gwang-Su) ; ±èÀÇÁ¾(Kim, Eui-Jong) - Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ ³í¹®Áý : Vol.12 No.6 (201812)
·½ ÄðÇϽº¿Í Ä«Áî¿ä ¼¼Áö¸¶ °ÇÃà¿¡¼­ ³ªÅ¸³ª´Â ÇÁ·Î±×·¥ÀÇ Á¶Á÷°ú °ø°£±¸¼º ¹æ¹ýÀÇ ºñ±³ºÐ¼®
±Ç°æ¹Î ; ±èÁ¾Áø - Çѱ¹½Ç³»µðÀÚÀÎÇÐȸ ³í¹®Áý : v.16 n.6(Åë±Ç 65È£) (200712)
[ƯÁý] ±¹³» ģȯ°æ °ÇÃ๰ »ç·Ê ºÐ¼®
Á¤Áö³ª ; ±è¿ë¼® ; À̽¹Π- ±×¸°ºôµù(Çѱ¹±×¸°ºôµùÇùÀÇȸÁö) : v.9 n.1 (200803)
°¡»óÇö½ÇÀ» È°¿ëÇÑ °ø°£¿¡¼­ÀÇ ³úÆÄ ÃøÁ¤°ú ½ºÆ®·¹½º º¯È­·® ºÐ¼®
±è¼±¿í(Kim, Sun-Uk) ; °­¼¼¿¬(Kang, Se-Yeon) ; Áö½Â¿­(Ji, Seung-Yeul) ; ÀüÇÑÁ¾(Jun, Han-Jong) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý °èȹ°è : Vol.35 No.08 (201908)
ÃÖ±Ù °ÇÃàºÐ¾ßÀÇ ÀΰøÁö´É ±â°èÇнÀ ¿¬±¸µ¿Çâ
°­Àμº(Kang, In Sung) ; ¹®Áø¿ì(Moon, Jin Woo) ; ¹ÚÁøö(Park, Jin Chul) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.33 No.04 (201704)
°ÇÃࡤµµ½Ã°ø°£ÀÇ Çö´ëÀû °ø°ø¼º¿¡ °üÇÑ ±âÃÊ ¿¬±¸
¿°Ã¶È£ ; ½É°æ¹Ì ; Á¶Áعè - ¿¬±¸º¸°í¼­(±âº») : 2008 n.8 (200902)
°ÇÃࡤ°ø°£µðÀÚÀÎ ºÐ¾ß EEG ½ÇÇ迬±¸ÀÇ ÅëÇÕÀû °æÇ⠺м®
±è»óÈñ(Kim, Sang-Hee) ; Ã߽¿¬(Choo, Seung-Yeon) - ´ëÇÑ°ÇÃàÇÐȸ³í¹®Áý : Vol.36 No.10 (202010)
°¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ã°¢Å¾ ÃÖÀûÁ¦¾î
±èÀç¹Î(Kim, Jae-Min) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ÃßÇÑ°æ(Chu, Han-Gyeong) ; À̵¿Çõ(Yi, Dong-Hyuk) ; ¹Ú¼ºÈ£(Park, SungHo) ; ¿©¸í¼®(Yeo, Myoung-Souk) ; ¹Úö¼ö(Park, Cheol-Soo) - Ãß°èÇмú¹ßÇ¥´ëȸ : 2018 (201811)