°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇѰÇÃàÇÐȸ|Çмú¹ßÇ¥´ëȸ ³í¹®Áý 2018³â 4¿ù

³í¹®¸í Åͺ¸ ³Ãµ¿±âÀÇ ±â°èÇнÀ ¸ðµ¨°ú ÇÏÀ̺긮µå ¸ðµ¨ ºñ±³ / Machine Learning model vs. Hybrid model of a turbo chiller / Ãá°è-05. °ÇÃàȯ°æ¹×¼³ºñ
ÀúÀÚ¸í ¹Ú¼ºÈ£(Park, SungHo) ; ¾È±â¾ð(Ahn, Ki Uhn) ; Ȳ½ÂÈ£(Hwang, Aaron) ; ÃÖ¼±±Ô(Choi, Sunkyu)½Äº°ÀúÀÚ ; ¹Úö¼ö(Park, Cheol Soo)½Äº°ÀúÀÚ
¹ßÇà»ç ´ëÇѰÇÃàÇÐȸ
¼ö·Ï»çÇ× ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý, Vol.38 No.1 (2018-04)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(408) ÃÑÆäÀÌÁö(2)
ISSN 2287-5786
ÁÖÁ¦ºÐ·ù µµ½Ã
ÁÖÁ¦¾î Àΰø½Å°æ¸Á ; ÇÏÀ̺긮µå ¸ðµ¨ ; ±â°èÇнÀ ; ±×·¹ÀÌ ¹Ú½º ¸ðµ¨ ; Á¦ 1¹ýÄ¢ ±â¹Ý ¸ðµ¨ ; µ¥ÀÌÅÍ ±â¹Ý ¸ðµ¨ ; Artificial Neural Network ; Hybrid model ; Machine learning ; Grey-box model ; Physics-based model ; Data-driven model
¿ä¾à2 In the previous research, the authors identified a valid range of inputs using Gaussian Mixture Model (GMM) and developed an Artificial Neural Network (ANN) model for optimizing the operation of a turbo chiller in an offifce building. In this study, the authors developed a new hybrid model which is different from the gray-box model and compared it with the ANN model developed in the previous study. The hybrid approach is a kind of a data-driven model but it also uses minimal physical knowledge (physics-based regression equations from the EnergyPlus). It is found that the hybrid model performs closely to the ANN model (MBE=2.05%, CVRMSE=7.98%). It is believed that the hybrid ANN model can be applied for the wider range of inputs since it is data-driven and based on physical knowledge, which will be validated in future study.
¼ÒÀåó ´ëÇѰÇÃàÇÐȸ
¾ð¾î Çѱ¹¾î
¡á Ãßõ¹®Çå (ÀÌ ¹®Çå°ú °°ÀÌ º» ¹®Çå)
°¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ã°¢Å¾ ÃÖÀûÁ¦¾î
±èÀç¹Î(Kim, Jae-Min) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ÃßÇѰæ(Chu, Han-Gyeong) ; À̵¿Çõ(Yi, Dong-Hyuk) ; ¹Ú¼ºÈ£(Park, SungHo) ; ¿©¸í¼®(Yeo, Myoung-Souk) ; ¹Úö¼ö(Park, Cheol-Soo) - Ãß°èÇмú¹ßÇ¥´ëȸ : 2018 (201811)
2025³â Àǹ«È­ ·Îµå¸Ê¿¡ µû¸¥ °ø°ø½Ã¼³ Á¦·Î¿¡³ÊÁö°ÇÃ๰ ÀÎÁõÁ¦µµ ½ÃÀå ¼ö¿ë¼º
À̽¹Î(Lee, Seung-Min) ; ±èÁøÈ£(Kim, Jin-Ho) ; ½Å±¤¼ö(Shin, Gwang-Su) ; ±èÀÇÁ¾(Kim, Eui-Jong) - Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ ³í¹®Áý : Vol.12 No.6 (201812)
Àΰø½Å°æ¸Á ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ãµ¿±â ¹× °øÁ¶±â ÃÖÀû ±âµ¿/Á¤Áö Á¦¾î
¹Ú¼ºÈ£(Park, SungHo) ; ¾È±â¾ð(Ahn, Ki Uhn) ; Ȳ½ÂÈ£(Hwang, Aaron) ; ÃÖ¼±±Ô(Choi, Sunkyu) ; ¹Úö¼ö(Park, Cheol Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.35 No.02 (201902)
°­È­ÇнÀÀ» ÀÌ¿ëÇÑ °Ç¹° ¿¡³ÊÁö ÃÖÀû Á¦¾î
¾È±â¾ð(Ahn, Ki Uhn) ; ¹Úö¼ö(Park, Cheol Soo) ; ¿©¸í¼®(Yeo, Myoung-Souk) - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.38 No.1 (201804)
ºùÃà¿­ ½Ã½ºÅÛÀÇ ÀÍÀÏ ¹æ³Ã·® ¿¹Ãø ±â°èÇнÀ ¸ðµ¨ ¹× Á¦¾î
½ÅÇѼÖ(Shin, Han-Sol) ; ¼­¿øÁØ(Suh, Won-Jun) ; ÃßÇѰæ(Chu, Han-Gyeong) ; ¶ó¼±Áß(Ra, Seon-Jung) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.33 No.11 (201711)
³Ã°¢¼ö À¯·® Á¦¾î¸¦ ÅëÇÑ ³Ã¹æ½Ã½ºÅÛÀÇ ¿¡³ÊÁö Àý°¨ È¿°ú¿¡ °üÇÑ °ËÅä
±èÇý¹Ì(Kim, Hyemi) ; ¼Û¿µÇÐ(Song, Young-hak) - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.37 No.1 (201704)
»ç¹«¼Ò °Ç¹°¿¡¼­ ³Ãµ¿±âÀÇ ´ë¼öÁ¦¾î¸¦ ÅëÇÑ ³Ãµ¿±â °Åµ¿ Ư¼º ¹× ¿¡³ÊÁö Àý°¨ È¿°ú ºÐ¼®
¼­º´¸ð(Byeong-Mo Seo) ; ¼ÕÁ¤Àº(Jeong-Eun Son) ; À̱¤È£(Kwang Ho Lee) - ¼³ºñ°øÇÐ³í¹®Áý : Vol.28 No.04 (201604)
Àü¿ª ¹Î°¨µµ ºÐ¼®À» ÀÌ¿ëÇÑ °Ç¹° ¿¡³ÊÁö ¼º´ÉÆò°¡ÀÇ ÇÕ¸®Àû °³¼±
À¯¿µ¼­(Yoo, Young-Seo) ; À̵¿Çõ(Yi, Dong-Hyuk) ; ±è¼±¼÷(Kim, Sun-Sook) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.36 No.05 (202005)
IoTÁ¤º¸±â¹Ý Modelica-EnergyPlus Co-simulationÀ» ÅëÇÑ ¿¡³ÊÁö¼Òºñ·® ÃßÁ¤
±èÇýÁø(Kim, Hye-Jin) ; ¼­µ¿Çö(Seo, Dong-Hyun) - Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ ³í¹®Áý : Vol.13 No.5 (201910)
³Ãµ¿±â ÃÖÀû ¿î¿µÀ» À§ÇÑ Data-Driven Model °³¹ß
¾È±â¾ð(Ahn, Ki Uhn) ; ¹Ú¼ºÈ£(Park, SungHo) ; Ȳ½ÂÈ£(Hwang, Aaron) ; ¹Úö¼ö(Park, Cheol Soo) - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.38 No.2 (201810)