³í¹®¸í |
±â°èÇнÀ ¸ðµ¨ ¹× ÃÖÀûÈ ¾Ë°í¸®Áò °áÇÕÀ» ÀÌ¿ëÇÑ Èí¼ö½Ä ³Ãµ¿±â ÃÖÀû È¿À² ¿îÀü / Optimal Control of an Absorption Chiller using a Machine Learning model and Optimization Algorithm / ÀϹݺι® |
ÀúÀÚ¸í |
¼¿øÁØ(Suh, Won-Jun) ; ÃßÇѰæ(Chu, Han-Gyeong) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ¶ó¼±Áß(Ra, Seon-Jung) ; ¹Úö¼ö(Park, Cheol-Soo) |
¼ö·Ï»çÇ× |
´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý, Vol.37 No.2 (2017-10) |
ÆäÀÌÁö |
½ÃÀÛÆäÀÌÁö(491) ÃÑÆäÀÌÁö(2) |
ÁÖÁ¦¾î |
Èí¼ö½Ä ³Ãµ¿±â ; ÃÖÀû Á¦¾î ; ±â°èÇнÀ ; À¯ÀüÇÁ·Î±×·¡¹Ö ; À¯Àü¾Ë°í¸®Áò ; Absorption Chiller ; Optimal control ; Machine learning ; Genetic Programming ; Genetic Algorithm |
¿ä¾à1 |
º» ¿¬±¸¿¡´Â Èí¼ö½Ä ³Ãµ¿±â ¿¡³ÊÁö »ç¿ë·®À» ¿¹ÃøÇÏ´Â ±â°èÇнÀ ¸ðµ¨(À¯ÀüÇÁ·Î±×·¡¹Ö ¾Ë°í¸®Áò Ȱ¿ë)À» ¸¸µé°í, ÀÌ ¸ðµ¨À» Ȱ¿ëÇÏ¿© Èí¼ö½Ä ³Ãµ¿±â ÃÖÀû È¿À² ¿îÀü ¹æ¾ÈÀ» ºÐ¼®ÇÑ´Ù. ÃÖÀû Á¦¾î º¯¼ö´Â ³Ã¼ö ¿Âµµ ¹× ³Ã°¢¼ö ¿Âµµ ¼³Á¤À̸ç, ÃÖÀûÁ¦¾î¸¦ À§ÇØ À¯ÀüÇÁ·Î±×·¡¹Ö ¸ðµ¨Àº À¯Àü¾Ë°í¸®Áò°ú °áÇյǾú´Ù. ÃÖÀû Ž»ö ±¸°£ÀÌ ºñ¼±ÇüÀûÀÌ¸ç ¶ÇÇÑ ´ÙÂ÷¿øÀ̱⠶§¹®¿¡, À¯Àü¾Ë°í¸®Áò°ú °áÇյǾúÀ¸¸ç, ÀÌ °úÁ¤Àº MATLAB Ç÷§Æû ³»¿¡¼ ±¸ÇöµÇ¾ú´Ù. ÃÖÀû Á¦¾î °á°ú, ¾à 20%ÀÇ ¿¡³ÊÁö¸¦ Àý°¨ °¡´ÉÇß´Ù. |
¿ä¾à2 |
In this study, a machine-learning(genetic programming, GP) model is developed to predict the energy consumption of an absorption chiller. The GP model was then used for optimal control of the chiller. The optimal control variables are the chilled water and condenser water supply temperatures. For the optimal control. the GP model was combined with a genetic algorithm, because the search space is very vast and non-linear. This was implemented in MATLAB platform. It is shown that the optimal control can save about 20% of the chiller energy. |