°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇѰÇÃàÇÐȸ|´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è 2017³â 10¿ù

³í¹®¸í ±âÁ¸ °Ç¹° HVAC ½Ã½ºÅÛ¿¡ ´ëÇÑ ´Ù¼¸ °¡Áö ±â°èÇнÀ ¸ðµ¨ °³¹ß / Five Machine Learning Models for HVAC Systems in an Existing Office Building
ÀúÀÚ¸í ¶ó¼±Áß(Ra, Seon-Jung)½Äº°ÀúÀÚ ; ½ÅÇѼÖ(Shin, Han-Sol)½Äº°ÀúÀÚ ; ¼­¿øÁØ(Suh, Won-Jun)½Äº°ÀúÀÚ ; ÃßÇѰæ(Chu, Han-Gyeong) ; ¹Úö¼ö(Park, Cheol-Soo)½Äº°ÀúÀÚ
¹ßÇà»ç ´ëÇѰÇÃàÇÐȸ
¼ö·Ï»çÇ× ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è, Vol.33 No.10 (2017-10)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(69) ÃÑÆäÀÌÁö(9)
ISSN 1226-9107
ÁÖÁ¦ºÐ·ù Àç·á / ȯ°æ¹×¼³ºñ
ÁÖÁ¦¾î ±âÁ¸ °Ç¹° ; ±â°èÇнÀ ; µ¥ÀÌÅÍ ±â¹Ý ¸ðµ¨ ; HVAC ½Ã½ºÅÛ ; ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨ ; Existing building ; machine learning ; data-driven model ; HVAC system ; Simulation model
¿ä¾à2 The first principles-based simulation model, e.g. dynamic simulation, is influenced by model uncertainty, simplification of the reality, lack of information, a modeler¡¯s subjective assumptions, etc. Recently, a data-driven machine learning model has received a growing attention for simulation of existing buildings. The data-driven model is advantageous that it is simpler and requires less inputs than the first principles based model. In this study, the authors applied five different machine learning techniques (Artificial Neural Network, Support Vector Machine, Gaussian Process, Random Forest, and Genetic Programming) to HVAC systems (chiller, cooling tower, pump, ice thermal storage system and air handling unit) installed in an existing office building. It was found that the five machine learning models are good enough to predict the dynamic behavior of the HVAC systems. The machine learning model made by Genetic Programming is most accurate among the five machine learning models. The models made by Support Vector Machine and Gaussian Process Model require significant computation time and thus are limited in terms of the number of inputs. The accuracy of the model made by Random Forest is dependent on the set of inputs.
¼ÒÀåó ´ëÇѰÇÃàÇÐȸ
¾ð¾î Çѱ¹¾î
DOI https://doi.org/10.5659/JAIK_SC.2017.33.10.69
ºÐ¼®¼­Áö
°ÇÃàȯ°æ ¹× ¼³ºñ > °ÇÃ༳ºñ > °øÁ¶¼³ºñ

¡á Ãßõ¹®Çå (ÀÌ ¹®Çå°ú °°ÀÌ º» ¹®Çå)
Àΰø½Å°æ¸Á ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ãµ¿±â ¹× °øÁ¶±â ÃÖÀû ±âµ¿/Á¤Áö Á¦¾î
¹Ú¼ºÈ£(Park, SungHo) ; ¾È±â¾ð(Ahn, Ki Uhn) ; Ȳ½ÂÈ£(Hwang, Aaron) ; ÃÖ¼±±Ô(Choi, Sunkyu) ; ¹Úö¼ö(Park, Cheol Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.35 No.02 (201902)
[ƯÁý¿ø°í] ±â°èÇнÀ ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨À» ÀÌ¿ëÇÑ ¼³ºñ½Ã½ºÅÛ ÃÖÀûÁ¦¾î
¹Úö¼ö ; ¼­¿øÁØ ; ½ÅÇÑ¼Ö ; ÃßÇѰæ ; ¶ó¼±Áß - ¼³ºñ | °øÁ¶ ³Ãµ¿ À§»ý(Çѱ¹¼³ºñ±â¼úÇùȸÁö) : Vol.34 No.01 (201701)
[½Ã·Ð] 4Â÷ »ê¾÷Çõ¸í ½Ã´ë, °ÇÃàÀÇ ´ëÀÀ
À̸í½Ä(Lee, Myung-Sik) - °ÇÃà(´ëÇѰÇÃàÇÐȸÁö) : Vol.61 No.05 (201705)
[ƯÁý] ±¹³» ģȯ°æ °ÇÃ๰ »ç·Ê ºÐ¼®
Á¤Áö³ª ; ±è¿ë¼® ; À̽¹Π- ±×¸°ºôµù(Çѱ¹±×¸°ºôµùÇùÀÇȸÁö) : v.9 n.1 (200803)
[ƯÁý¿ø°í] ÀΰøÁö´É ±â¹Ý MPC¸¦ ÅëÇÑ °³º° °øÁ¶½Ã½ºÅÛÀÇ ÃÖÀû¿îÀü
¼­º´¸ð ; À̱¤È£ - ¼³ºñ | °øÁ¶ ³Ãµ¿ À§»ý(Çѱ¹¼³ºñ±â¼úÇùȸÁö) : Vol.34 No.01 (201701)
»ç¹«¼Ò °Ç¹°¿¡¼­ ³Ãµ¿±âÀÇ ´ë¼öÁ¦¾î¸¦ ÅëÇÑ ³Ãµ¿±â °Åµ¿ Ư¼º ¹× ¿¡³ÊÁö Àý°¨ È¿°ú ºÐ¼®
¼­º´¸ð(Byeong-Mo Seo) ; ¼ÕÁ¤Àº(Jeong-Eun Son) ; À̱¤È£(Kwang Ho Lee) - ¼³ºñ°øÇÐ³í¹®Áý : Vol.28 No.04 (201604)
°¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ã°¢Å¾ ÃÖÀûÁ¦¾î
±èÀç¹Î(Kim, Jae-Min) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ÃßÇѰæ(Chu, Han-Gyeong) ; À̵¿Çõ(Yi, Dong-Hyuk) ; ¹Ú¼ºÈ£(Park, SungHo) ; ¿©¸í¼®(Yeo, Myoung-Souk) ; ¹Úö¼ö(Park, Cheol-Soo) - Ãß°èÇмú¹ßÇ¥´ëȸ : 2018 (201811)
±¹³» ÆÐ½Ãºê°ÇÃ๰ ¼³°è ¹× ½Ã°ø»ç·Ê
À̸íÁÖ - Çѱ¹±×¸°ºôµùÇùÀÇȸ Ãß°èÇмú°­¿¬È¸ ³í¹®Áý : (200911)
±â°èÇнÀ ¸ðµ¨ ¹× ÃÖÀûÈ­ ¾Ë°í¸®Áò °áÇÕÀ» ÀÌ¿ëÇÑ Èí¼ö½Ä ³Ãµ¿±â ÃÖÀû È¿À² ¿îÀü
¼­¿øÁØ(Suh, Won-Jun) ; ÃßÇѰæ(Chu, Han-Gyeong) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ¶ó¼±Áß(Ra, Seon-Jung) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.37 No.2 (201710)
»ç¹«¼Ò °Ç¹°¿¡¼­ ³Ãµ¿±âÀÇ ºÎºÐºÎÇÏÀ² ¹× ³Ã¹æ ¿¡³ÊÁö ¼º´É Ư¼º ºÐ¼®
¼­º´¸ð(Byeong-Mo Seo) ; À¯º´È£(Byeong-Ho Yu) ; À̱¤È£(Kwang-Ho Lee) - ¼³ºñ°øÇÐ³í¹®Áý : Vol.27 No.11 (201511)
¡á Á¦ 1 ÀúÀÚÀÇ ´Ù¸¥ ¹®Çå ½Äº°ÀúÀÚ´õº¸±â
°Ç¹° ¸®Æ®·ÎÇÍ ¿ä¼Ò ±â¼úÀÇ È®·üÀû Ư¼º ¹× ±³È£ÀÛ¿ëÀ» °í·ÁÇÑ Scalability±â¹Ý ½Ã¹Ä·¹ÀÌÅÍ °³¹ß
¶ó¼±Áß; Çã¼±¿µ; ±è¿µ¼·; ¹Úö¼ö - Ãß°èÇмú¹ßÇ¥´ëȸ : 2024 (202411)
Åͺ¸ ³Ãµ¿±âÀÇ ¹°¸® Á¤º¸ ±â¹Ý ½Å°æ¸Á ¸ðµ¨ °³¹ß
¶ó¼±Áß;¹Úö¼ö - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.44 No.2 (202410)
ÆÐ½Ãºê ¹× ¾×Ƽºê ¿ä¼Ò ±â¼úÀÇ µ¿Àû ±³È£ ÀÛ¿ëÀ» °í·ÁÇÑ ±×¸° ¸®¸ðµ¨¸µ ÀÇ»ç °áÁ¤
Çã¼±¿µ(Heo, Seon-Young) ; ¶ó¼±Áß(Ra, Seon-Jung) ; ±è¿µ¼·(Kin, Young-Sub) ; ÃßÇѰæ(Chu, Han-Gyeong) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý : Vol.39 No.8 (202308)
Àç½ÇÀÚ ¿¹Ãø Á¤º¸ ±â¹Ý üÀ° ½Ã¼³ Àü¿­ ±³È¯ ȯ±â½Ã½ºÅÛÀÇ ½Ç½Ã°£ ¸ðµ¨ ¿¹Ãø Á¦¾î
¶ó¼±Áß; Á¶Çü°ï; Á¤ÈÆ; ÇãÅ¿í; ¹Úö¼ö - Ãß°èÇмú¹ßÇ¥´ëȸ : 2022 (202211)
NODE-GAMÀ» ÅëÇÑ µ¿Àû ¹Î°¨µµ ºÐ¼®
¼ÛÅ¿ë; ¹Úöȫ; ¶ó¼±Áß; ±è¿µ¼·; ¹Úö¼ö - Ãß°èÇмú¹ßÇ¥´ëȸ : 2022 (202211)
°Ç¹° ¿¡³ÊÁö ¸®Æ®·ÎÇÍ ÀÇ»ç°áÁ¤À» À§ÇÑ causality ¸ðµ¨
¹Úöȫ; ±è¿µ¼·; ¶ó¼±Áß; ¼ÛÅ¿ë; ¹Úö¼ö - Ãß°èÇмú¹ßÇ¥´ëȸ : 2022 (202211)
Çб³ üÀ°°ü °Ç¹°ÀÇ ½Ç³» ¹Ì¼¼¸ÕÁö ³óµµ ¿¹Ãø ¸ðµ¨ °³¹ß
¶ó¼±Áß;¹Úö¼ö - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.42 No.1 (202204)
ÁýÁß ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨À» Ȱ¿ëÇÑ °Ç¹°ÀÇ ½Ç½Ã°£ ³Ã¹æ ¿¹Ãø Á¦¾î
¶ó¼±Áß;±èÁøÈ«;±è¿µ¼·;Á¶Çü°ï;½ÅÇѼÖ;¹Úö¼ö - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.41 No.2 (202110)
ÀÚ¿¬Ã¤±¤ ¸ðµ¨ÀÇ ºÒÈ®½Ç¼ºÀ» °í·ÁÇÑ ½Ç½Ã°£ Àü±âÁ¶¸í Á¦¾î
Á¶Çü°ï;¶ó¼±Áß;±èÁøÈ«;¹Úö¼ö - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.41 No.2 (202110)
½Ç³»¿Âµµ ¿¹ÃøÀ» ÅëÇÑ °øÀå °Ç¹°ÀÇ ½Ç½Ã°£ ³­¹æ Á¦¾î
¶ó¼±Áß; ½ÅÇѼÖ; ±è¿µ¼·; Á¶Çü°ï; ±èÁøÈ«; ¹Úö¼ö - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.41 No.1 (202104)