°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ|Ãß°èÇмú¹ßÇ¥´ëȸ 2015³â 11¿ù

³í¹®¸í Àç½ÇÀÚÀÇ ¿µÇâÀ» °í·ÁÇÑ µ¥ÀÌÅÍ ±â¹Ý ¸ðµ¨ °³¹ß / Development of data-driven models with occupant behavior / 2-4 : ºôµù½Ã¹Ä·¹ÀÌ¼Ç I
ÀúÀÚ¸í ¾È±â¾ð(Ahn, Ki-Uhn) ; ±è¿ë¼¼(Kim, Yong-Se)½Äº°ÀúÀÚ ; ±è¿µ¹Î(Kim, Young-Min) ; ¹Úö¼ö(Park, Cheol Soo)½Äº°ÀúÀÚ
¹ßÇà»ç Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ
¼ö·Ï»çÇ× Ãß°èÇмú¹ßÇ¥´ëȸ, 2015 (2015-11)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(163) ÃÑÆäÀÌÁö(2)
ÁÖÁ¦ºÐ·ù ȯ°æ¹×¼³ºñ
ÁÖÁ¦¾î µ¥ÀÌÅÍ ±â¹Ý ¸ðµ¨ ; °¡¿ì½Ã¾È ÇÁ·Î¼¼½º ; ¸ðµ¨±â¹Ý ¿¹Ãø Á¦¾î ; Àç½ÇÀÚ ; ·£´ý ; Data driven model ; Gaussian Process ; Model Predictive Control ; Occupant ; Randomness
¿ä¾à2 A data-driven model is acknowledged since it requires a few dominant inputs to mimic the dynamics of the building systems. In order to ensure the reliability of model prediction, the inputs should be selected considering the correlation among the training data. In such case, the occupant information is able to be used as a one of inputs for the model. The authors developed the Gaussian Process (GP) model, a data-driven approach, to predict the energy consumption of HVAC systems in existing buildings. The occupant behavior was used for the input data, but its randomness significantly affected the performance of model prediction. The randomness of occupant behavior was investigated using a Normalized Cumulative Periodogram (NCP) based on a random walk hypothesis. A wavelet coherence was used to choose the input among the measured data for the GP model. The developed GP models had good prediction performance; however the training data should be updated in real-time to capture the effect of non-stationary occupant behavior.
¼ÒÀåó Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ
¾ð¾î Çѱ¹¾î
¡á Ãßõ¹®Çå (ÀÌ ¹®Çå°ú °°ÀÌ º» ¹®Çå)
Àç½ÇÀÚ ¹ÝÀÀÀÌ °í·ÁµÈ ¿¡ÀÌÀüÆ® ºôµù ¿¡³ÊÁö ½Ã¹Ä·¹À̼Ç
±èÁ¾Çå(Kim, Jong-Hun) ; ¹Ú»ó¸°(Park, Sang-Lin) ; ±è´ö¿ì(Kim, Deuk-Woo) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è : v.27 n.12 (201112)
°¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ã°¢Å¾ ÃÖÀûÁ¦¾î
±èÀç¹Î(Kim, Jae-Min) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ÃßÇѰæ(Chu, Han-Gyeong) ; À̵¿Çõ(Yi, Dong-Hyuk) ; ¹Ú¼ºÈ£(Park, SungHo) ; ¿©¸í¼®(Yeo, Myoung-Souk) ; ¹Úö¼ö(Park, Cheol-Soo) - Ãß°èÇмú¹ßÇ¥´ëȸ : 2018 (201811)
¿¡³ÊÁö ½Ç½Ã°£ ¸ðµ¨ ¿¹Ãø Á¦¾î¸¦ À§ÇÑ Àΰø½Å°æ¸Á º¯¼ö ÃÖÀûÈ­
±è¿µ¹Î(Kim, Young-Min) ; ±è¿ë¼¼(Kim, Yong-Se) ; ¾È±â¾ð(Ahn, Ki-Uhn) ; ¹Úö¼ö(Park, Cheol Soo) - Ãß°èÇмú¹ßÇ¥´ëȸ : 2015 (201511)
±âÁ¸ °Ç¹° HVAC ½Ã½ºÅÛ¿¡ ´ëÇÑ ´Ù¼¸ °¡Áö ±â°èÇнÀ ¸ðµ¨ °³¹ß
¶ó¼±Áß(Ra, Seon-Jung) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ¼­¿øÁØ(Suh, Won-Jun) ; ÃßÇѰæ(Chu, Han-Gyeong) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.33 No.10 (201710)
°­È­ÇнÀÀ» ÀÌ¿ëÇÑ °Ç¹° ¿¡³ÊÁö ÃÖÀû Á¦¾î
¾È±â¾ð(Ahn, Ki Uhn) ; ¹Úö¼ö(Park, Cheol Soo) ; ¿©¸í¼®(Yeo, Myoung-Souk) - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.38 No.1 (201804)
Àç½Ç È®·ü°ú ÀÎÁöÀû ¿¡ÀÌÀüÆ®¸¦ ¿¬°èÇÑ ºôµù ¿¡³ÊÁö ½Ã¹Ä·¹À̼Ç
¹Ú»ó¸°(Park, Sang-Lin) ; ±èÁ¾Çå(Kim, Jong-Hun) ; ±è´ö¿ì(Kim, Deuk-Woo) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è : v.28 n.01 (201201)
Àΰø½Å°æ¸Á ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ãµ¿±â ¹× °øÁ¶±â ÃÖÀû ±âµ¿/Á¤Áö Á¦¾î
¹Ú¼ºÈ£(Park, SungHo) ; ¾È±â¾ð(Ahn, Ki Uhn) ; Ȳ½ÂÈ£(Hwang, Aaron) ; ÃÖ¼±±Ô(Choi, Sunkyu) ; ¹Úö¼ö(Park, Cheol Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.35 No.02 (201902)
2025³â Àǹ«È­ ·Îµå¸Ê¿¡ µû¸¥ °ø°ø½Ã¼³ Á¦·Î¿¡³ÊÁö°ÇÃ๰ ÀÎÁõÁ¦µµ ½ÃÀå ¼ö¿ë¼º
À̽¹Î(Lee, Seung-Min) ; ±èÁøÈ£(Kim, Jin-Ho) ; ½Å±¤¼ö(Shin, Gwang-Su) ; ±èÀÇÁ¾(Kim, Eui-Jong) - Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ ³í¹®Áý : Vol.12 No.6 (201812)
ºùÃà¿­ ½Ã½ºÅÛÀÇ ÀÍÀÏ ¹æ³Ã·® ¿¹Ãø ±â°èÇнÀ ¸ðµ¨ ¹× Á¦¾î
½ÅÇѼÖ(Shin, Han-Sol) ; ¼­¿øÁØ(Suh, Won-Jun) ; ÃßÇѰæ(Chu, Han-Gyeong) ; ¶ó¼±Áß(Ra, Seon-Jung) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.33 No.11 (201711)
°Ç¹° ¿¡³ÊÁö ½Ã¹Ä·¹À̼ÇÀÇ À¯¿ë¼º
±è´ö¿ì(Kim, Deuk Woo) ; ¹Úö¼ö(Park, Cheol Soo) ; À̽¾ð(Lee, Seung Eon) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.33 No.05 (201705)