°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ|Ãß°èÇмú¹ßÇ¥´ëȸ 2015³â 11¿ù

³í¹®¸í ¿¡³ÊÁö ½Ç½Ã°£ ¸ðµ¨ ¿¹Ãø Á¦¾î¸¦ À§ÇÑ Àΰø½Å°æ¸Á º¯¼ö ÃÖÀûÈ­ / Optimized neural network for Real time Model-based Predictive Control / 2-4 : ºôµù½Ã¹Ä·¹ÀÌ¼Ç I
ÀúÀÚ¸í ±è¿µ¹Î(Kim, Young-Min) ; ±è¿ë¼¼(Kim, Yong-Se)½Äº°ÀúÀÚ ; ¾È±â¾ð(Ahn, Ki-Uhn) ; ¹Úö¼ö(Park, Cheol Soo)½Äº°ÀúÀÚ
¹ßÇà»ç Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ
¼ö·Ï»çÇ× Ãß°èÇмú¹ßÇ¥´ëȸ, 2015 (2015-11)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(159) ÃÑÆäÀÌÁö(2)
ÁÖÁ¦ºÐ·ù ȯ°æ¹×¼³ºñ
ÁÖÁ¦¾î ¸ðµ¨ ¿¹Ãø Á¦¾î ; ¹ÝÀÀÇ¥¸é¹ý ; Àΰø½Å°æ¸Á ; À¯Àü¾Ë°í¸®Áò ; Model Predictive Control ; Response Surface Method ; Neural Network ; Genetic Algorithm
¿ä¾à2 Recently, Model-based Predictive Control (MPC) based on a data-driven model are highlighted for building energy savings. The data driven model is based on a correlation between inputs and outputs instead of relying on the first principles. The reason for the data-driven model is its simplicity: requiring far less information, time and assumptions of the model. In this study, Artificial Neural Network (ANN) is employed for the MPC. One of the problems for the MPC using ANN lies in tuning ANN parameters(the number of hidden layers and nodes). However, there is no explicit and definite solution to select the optimal ANN parameters. For the study, the authors used a response surface method to identify the ANN¡¯s behavior according to the parameters with the given data. Then, a Central Composite Faced-design (CCF) was applied to tune the number of nodes. With the predictions using the optimized ANN, GA was used to solve the optimal control problem for MPC.
¼ÒÀåó Çѱ¹°ÇÃàģȯ°æ¼³ºñÇÐȸ
¾ð¾î Çѱ¹¾î
¡á Ãßõ¹®Çå (ÀÌ ¹®Çå°ú °°ÀÌ º» ¹®Çå)
±âÁ¸ °Ç¹° HVAC ½Ã½ºÅÛ¿¡ ´ëÇÑ ´Ù¼¸ °¡Áö ±â°èÇнÀ ¸ðµ¨ °³¹ß
¶ó¼±Áß(Ra, Seon-Jung) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ¼­¿øÁØ(Suh, Won-Jun) ; ÃßÇѰæ(Chu, Han-Gyeong) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.33 No.10 (201710)
Àΰø½Å°æ¸Á ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ãµ¿±â ¹× °øÁ¶±â ÃÖÀû ±âµ¿/Á¤Áö Á¦¾î
¹Ú¼ºÈ£(Park, SungHo) ; ¾È±â¾ð(Ahn, Ki Uhn) ; Ȳ½ÂÈ£(Hwang, Aaron) ; ÃÖ¼±±Ô(Choi, Sunkyu) ; ¹Úö¼ö(Park, Cheol Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.35 No.02 (201902)
[ƯÁý¿ø°í] ÀΰøÁö´É ±â¹Ý MPC¸¦ ÅëÇÑ °³º° °øÁ¶½Ã½ºÅÛÀÇ ÃÖÀû¿îÀü
¼­º´¸ð ; À̱¤È£ - ¼³ºñ | °øÁ¶ ³Ãµ¿ À§»ý(Çѱ¹¼³ºñ±â¼úÇùȸÁö) : Vol.34 No.01 (201701)
[ƯÁý¿ø°í] ±â°èÇнÀ ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨À» ÀÌ¿ëÇÑ ¼³ºñ½Ã½ºÅÛ ÃÖÀûÁ¦¾î
¹Úö¼ö ; ¼­¿øÁØ ; ½ÅÇÑ¼Ö ; ÃßÇѰæ ; ¶ó¼±Áß - ¼³ºñ | °øÁ¶ ³Ãµ¿ À§»ý(Çѱ¹¼³ºñ±â¼úÇùȸÁö) : Vol.34 No.01 (201701)
°¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¸ðµ¨À» ÀÌ¿ëÇÑ ³Ã°¢Å¾ ÃÖÀûÁ¦¾î
±èÀç¹Î(Kim, Jae-Min) ; ½ÅÇѼÖ(Shin, Han-Sol) ; ÃßÇѰæ(Chu, Han-Gyeong) ; À̵¿Çõ(Yi, Dong-Hyuk) ; ¹Ú¼ºÈ£(Park, SungHo) ; ¿©¸í¼®(Yeo, Myoung-Souk) ; ¹Úö¼ö(Park, Cheol-Soo) - Ãß°èÇмú¹ßÇ¥´ëȸ : 2018 (201811)
Àç½ÇÀÚ ¹ÝÀÀÀÌ °í·ÁµÈ ¿¡ÀÌÀüÆ® ºôµù ¿¡³ÊÁö ½Ã¹Ä·¹À̼Ç
±èÁ¾Çå(Kim, Jong-Hun) ; ¹Ú»ó¸°(Park, Sang-Lin) ; ±è´ö¿ì(Kim, Deuk-Woo) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è : v.27 n.12 (201112)
°¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¸ðµ¨°ú ³Ãµ¿±â ½Ç½Ã°£ ÃÖÀû Á¦¾î
±è¿µÁø(Kim, Young-Jin) ; ¹Úö¼ö(ParkCheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è : v.30 n.7 (201407)
[ƯÁý] EnergyPlus¿Í MATLAB ¿¬µ¿À» ÅëÇÑ ANN ±â¹Ý °øÁ¶¼³ºñ ÃÖÀûÁ¦¾î ¸ðµ¨¸µ ±â¹ý
¿¬»óÈÆ ; ¼­º´¸ð ; ÀÌÁ¦Çå ; ¹®Áø¿ì ; À̱¤È£ - ±×¸°ºôµù(Çѱ¹±×¸°ºôµùÇùÀÇȸÁö) : Vol.18 No.2 (201706)
ºò µ¥ÀÌÅÍ ºÐ¼® ±â¹ýÀ» Ȱ¿ëÇÑ ±âÁ¸ °ÇÃ๰ µ¥ÀÌÅͺ£À̽º ºÐ¼®
¾È±â¾ð(Ahn, Ki-Uhn) ; ¹Úö¼ö(Park, Cheol Soo) - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : Vol.36 No.2 (201610)
ºùÃà¿­ ½Ã½ºÅÛÀÇ ÀÍÀÏ ¹æ³Ã·® ¿¹Ãø ±â°èÇнÀ ¸ðµ¨ ¹× Á¦¾î
½ÅÇѼÖ(Shin, Han-Sol) ; ¼­¿øÁØ(Suh, Won-Jun) ; ÃßÇѰæ(Chu, Han-Gyeong) ; ¶ó¼±Áß(Ra, Seon-Jung) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý ±¸Á¶°è : Vol.33 No.11 (201711)