°ÇÃ൵½Ã°ø°£¿¬±¸¼Ò

Architecture & Urban Research Institute

pdf¿ø¹®º¸±â ¿¡·¯ ÇØ°á¹æ¹ý ¹Ù·Î°¡±â



¹®ÇåȨ > ¿¬±¸³í¹® > »ó¼¼

[¿ø¹®º¸±â½Ã ¼ÒºñµÇ´Â Æ÷ÀÎÆ® : 100 Æ÷ÀÎÆ®] ¹Ì¸®º¸±â Àοë

´ëÇѰÇÃàÇÐȸ|Çмú¹ßÇ¥´ëȸ ³í¹®Áý 2014³â 10¿ù

³í¹®¸í °¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¸ðµ¨¿¡ ´ëÇÑ µ¥ÀÌÅÍ ÇÊÅ͸µ ±â¹ý Àû¿ë / Data Filtering for a Gaussian Process Model / Ãß°è-05. °ÇÃàȯ°æ ¹× ¼³ºñ
ÀúÀÚ¸í ¾È±â¾ð½Äº°ÀúÀÚ ; ¹Úö¼ö½Äº°ÀúÀÚ
¹ßÇà»ç ´ëÇѰÇÃàÇÐȸ
¼ö·Ï»çÇ× ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý, v.34 n.2 (2014-10)
ÆäÀÌÁö ½ÃÀÛÆäÀÌÁö(385) ÃÑÆäÀÌÁö(2)
ISSN 2287-5786
ÁÖÁ¦ºÐ·ù ȯ°æ¹×¼³ºñ
ÁÖÁ¦¾î °¡¿ì½Ã¾È ÇÁ·Î¼¼½º ; µ¥ÀÌÅÍ ±â¹Ý ¸ðµ¨ ; µ¥ÀÌÅÍ ÇÊÅ͸µ ; ·£´ý »ùÇà ÄÁ¼¾¼­½º ; Gaussian Process ; Data-driven Model ; Data Filtering ; RANSAC
¿ä¾à2 This study reports a data filtering method for a GP(Gaussian Process) model for an existing building. The GP model is explained in another paper presented by the authors. This paper deals with how to deal with outliers usually appearing in a training data set for the GP model. In this study, RANSAC (RANdom SAmple Consensus) is selected for detecting the outliers from the training data. The RANSAC method can be beneficially applied to improve the accuracy of the GP model.
¼ÒÀåó ´ëÇѰÇÃàÇÐȸ
¾ð¾î Çѱ¹¾î
¡á Á¦ 1 ÀúÀÚÀÇ ´Ù¸¥ ¹®Çå ½Äº°ÀúÀÚ´õº¸±â
±âÁ¸ °ÇÃ๰À» À§ÇÑ °¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¿¡³ÊÁö ¸ðµ¨
¾È±â¾ð ; ¹Úö¼ö - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : v.34 n.2 (201410)
ÀÏ»çÁ¶Àý ÀåÄ¡ Àû¿ë¿¡ µû¸¥ ¿¡³ÊÁö ¹× ºñ¿ëÈ¿°ú ºÐ¼®
¾È±â¾ð ; ±è½ÂÁø ; ±èµ¿Èñ ; ¹®Çö¼® - Çѱ¹°ÇÃà½Ã°øÇÐȸ Çмú.±â¼ú³í¹®¹ßǥȸ ³í¹®Áý : v.13 n.2(Åë±Ç Á¦25È£) (201311)
°¡¿ì½Ã¾È ÇÁ·Î¼¼½º ¿¡¹Ä·¹ÀÌÅ͸¦ ÀÌ¿ëÇÑ ÃʰíÃþ »ç¹«¼Ò °Ç¹°ÀÇ ½Ç½Ã°£ ÃÖÀû ¿î¿µ
°­ÁöÀº ; ±è¿µÁø ; ¾È±â¾ð ; ¹Úö¼ö - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : v.33 n.1 (201304)
¼³°è´Ü°è¿¡¼­ µ¿Àû °Ç¹° ¿¡³ÊÁö ¼º´ÉºÐ¼®ÀÇ ÀïÁ¡µé
¾È±â¾ð(Ahn, Ki-Uhn) ; ±è¿µÁø(Kim, Young-Jin) ; ¹Úö¼ö(Park, Cheol-Soo) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è : v.28 n.12 (201212)
±âÁ¸°ÇÃ๰ÀÇ µ¿Àû ¿¡³ÊÁö ½Ã¹Ä·¹ÀÌ¼Ç ¸ðµ¨¸µ
¾È±â¾ð ; ±è´ö¿ì ; ±è¿µÁø ; À±¼ºÈ¯ ; ¹Úö¼ö - Ãß°èÇмú¹ßÇ¥´ëȸ : 2012 (201210)
È®·üÀû ¿¡¹Ä·¹ÀÌÅ͸¦ ÀÌ¿ëÇÑ ¿ÜÇÇ ½Ã½ºÅÛ ÃÖÀû¼³°è
±è¿µÁø ; ¾È±â¾ð ; ¹Úö¼ö - Ãß°èÇмú¹ßÇ¥´ëȸ : 2012 (201210)
°Ç¹° ¿¡³ÊÁö ½Ã¹Ä·¹À̼ÇÀÇ ¿­Àû Á¶´×¿¡ ¼ö¹ÝµÇ´Â ºÒÈ®½Ç¼º
°­ÁöÀº ; ±è¿µÁø ; ¾È±â¾ð ; À̼­¿µ ; ¹Úö¼ö - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : v.32 n.2 (201210)
BIM ¿¡³ÊÁö ½Ã¹Ä·¹ÀÌ¼Ç ÀÎÅÍÆäÀ̽º °³¹ß°ú °ËÁõ
¾È±â¾ð(Ahn Ki-Uhn) ; ±è¿µÁø(Kim Young-Jin) ; ¹Úö¼ö(Park Cheol-Soo) ; ±èÀÎÇÑ(Kim In-Han) - ´ëÇѰÇÃàÇÐȸ³í¹®Áý °èȹ°è : v.28 n.05 (201205)
Bayesian MCMC ¹æ¹ýÀ» ÀÌ¿ëÇÑ HVAC ½Ã½ºÅÛ ÀÇ»ç°áÁ¤
±è¿µÁø ; ¾È±â¾ð ; ¹Úö¼ö ; ±èÀÎÇÑ - ´ëÇѰÇÃàÇÐȸ Çмú¹ßÇ¥´ëȸ ³í¹®Áý : v.32 n.1(°èȹ°è) (201204)
¼³°è´Ü°è¿¡¼­ µ¿Àû ½Ã¹Ä·¹ÀÌ¼Ç ÅøÀ» ÀÌ¿ëÇÑ °Ç¹°¿¡³ÊÁö ¼º´ÉºÐ¼®ÀÇ ÀïÁ¡µé
¾È±â¾ð ; ¹Úö¼ö - Ãá°èÇмú¹ßÇ¥´ëȸ : 2012 (201203)