³í¹®¸í |
»ç·Ê±â¹ÝÃß·ÐÀ» ÀÌ¿ëÇÑ Ãʱâ´Ü°è °ø»çºñ ¿¹Ãø ¹æ¹ý / Schematic Cost Estimation Method using Case-Based Reasoning : Focusing on Determining Attribute Weight / ¼Ó¼º °¡ÁßÄ¡ »êÁ¤À» Áß½ÉÀ¸·Î |
ÀúÀÚ¸í |
¹Ú¹®¼(Park, Moonseo) ; ¼º±âÈÆ(Seong, Kihoon) ; ÀÌÇö¼ö(Lee, Hyun-soo) ; Áö¼¼Çö (Ji, Sae-Hyun) ; ±è¼ö¿µ (Kim, Sooyoung) |
¼ö·Ï»çÇ× |
Çѱ¹°Ç¼³°ü¸®ÇÐȸ ³í¹®Áý, Vol.11 No.4 (2010-07) |
ÆäÀÌÁö |
½ÃÀÛÆäÀÌÁö(22) ÃÑÆäÀÌÁö(10) |
ÁÖÁ¦¾î |
°ø»çºñ ¿¹Ãø ; »ç·Ê±â¹ÝÃß·Ð ; ¼Ó¼º °¡ÁßÄ¡ ; À¯ÀüÀÚ ¾Ë°í¸®Áò ; Cost Estimation ; Case-Based Reasoning ; Attribute Weight ; Genetic Algorithm |
¿ä¾à1 |
ÇÁ·ÎÁ§Æ® Ãʱâ´Ü°è¿¡¼ »êÁ¤µÈ °ø»çºñ´Â ¹ßÁÖÀÚÀÇ Áß¿äÇÑ ÀÇ»ç°áÁ¤¿¡ ¿µÇâÀ» ¹ÌÄ¡¹Ç·Î ±× Á߿伺ÀÌ °Á¶µÇ°í ÀÖÁö¸¸, Á¤º¸ÀÇ ºÎÁ·À¸·Î ÀÎÇÏ¿© ÁÖ·Î °ßÀûÀü¹®°¡ÀÇ °æÇè°ú Áö½Ä¿¡ ÀÇÁ¸ÇÏ¿© ÁøÇàµÈ´Ù. À̰ÍÀº ÇöÀç ¹®Á¦¿Í °¡Àå À¯»çÇÑ °ú°Å »ç·Ê¸¦ ¼±ÅÃÇÏ¿© »ç¿ëÇÏ´Â »ç·Ê±â¹ÝÃß·ÐÀ¸·Î ¹ßÀüµÇ¾ú´Ù. »ç·Ê±â¹ÝÃß·Ð ¸ðµ¨ÀÇ ¿¹Ãø ¼º´ÉÀº ¼Ó¼º °¡ÁßÄ¡ÀÇ »êÁ¤ °á°ú¿¡ ¸¹Àº ¿µÇâÀ» ¹ÞÀ¸¹Ç·Î, Á¤È®ÇÑ ¼Ó¼º °¡ÁßÄ¡ÀÇ »êÁ¤ÀÌ ¿ä±¸µÈ´Ù. ±âÁ¸ÀÇ ¿¬±¸´Â ¼öÇÐÀû ¹æ¹ý ¶Ç´Â Àü¹®°¡ÀÇ ÁÖ°üÀû ÆÇ´ÜÀ» ÀÌ¿ëÇÏ´Â ¹æ¹ýÀ» »ç¿ëÇÑ´Ù. º» ¿¬±¸´Â ±âÁ¸ ¿¬±¸ÀÇ ¹®Á¦Á¡À» º¸¿ÏÇϱâ À§ÇØ À¯ÀüÀÚ ¾Ë°í¸®ÁòÀ» ÀÌ¿ëÇÑ »ç·Ê±â¹ÝÃß·Ð °ø»çºñ ¿¹Ãø ¸ðµ¨À» Á¦¾ÈÇÑ´Ù. °ø»çºñ ¿¹Ãø ¸ðµ¨Àº ÃÖ±ÙÀÌ¿ô Á¶È¸ ¹æ¹ýÀÇ °úÁ¤¿¡ ÀÇÇØ ÃßÃâÇÑ »ç·ÊÀÇ °ø»çºñ Á¤º¸¸¦ ÀÌ¿ëÇÏ¿© ¿¹Ãø ´ë»óÀÇ °ø»çºñ¸¦ »êÁ¤ÇÑ´Ù. °ËÁõ °á°ú, AACE¿¡¼ Á¤ÀÇÇÑ °ßÀû½Ã±âº° ¿¹Ãø Á¤È®µµ¿Í Ç¥ÁØÈ ȸ±Í°è¼ö, µ¿Àϰ¡ÁßÄ¡¸¦ »ç¿ëÇÑ ¹æ¹ýº¸´Ù ³ôÀº ¿ÀÂ÷À²À» ³ªÅ¸³»¾ú´Ù. µû¶ó¼ º» ¿¬±¸´Â À¯ÀüÀÚ ¾Ë°í¸®ÁòÀ» µµÀÔÇÏ¿© ¿¹Ãø ¼º´ÉÀ» Çâ»ó½Ã۰í, »ç·Ê±â¹ÝÃß·Ð ¹æ¹ýÀ» »ç¿ëÇÏ¿© »ç¿ëÀÚ°¡ ÀÌÇØÇϱ⠿ëÀÌÇÑ ÇØ°áÃ¥ µµÃâ°úÁ¤À» Á¦½ÃÇÏ¿´´Ù´Âµ¥ ±× Àǹ̰¡ ÀÖ´Ù. |
¿ä¾à2 |
Because the estimated cost at early stage has great influence on decisions of project owner, the importance of early cost estimation is increasing. However, it depends on experience and knowledge of the estimator mainly due to shortage of information. Those tendency developed into case-based reasoning(CBR) method which solves new problems by adapting previous solution to similar past problems. The performance of CBR model is affected by attribute weight, so that its accurate determination is necessary. Previous research utilizes mathematical method or subjective judgement of estimator. In order to improve the problem of previous research, this suggests CBR schematic cost estimation method using genetic algorithm to determine attribute weight. The cost model employs nearest neighbor retrieval for selecting past case. And it estimates the cost of new cases based on cost information of extracted cases. As the result of validation for 17 testing cases, 3.57% of error rate is calculated. This rate is superior to accuracy rate proposed by AACE and the method to determine attribute weight using multiple regression analysis and feature counting. The CBR cost estimation method improve the accuracy by introducing genetic algorithm for attribute weight. Moreover, this makes user understand the problem-solving process easier than other artificial intelligence method, and find solution within short time through case retrieval algorithm. |